1. Doubly Reflected BSDEs and ${\cal E}^{f}$-Dynkin games: beyond the right-continuous case
- Author
-
Grigorova, Miryana, Imkeller, Peter, Ouknine, Youssef, Quenez, Marie-Claire, Universität Bielefeld = Bielefeld University, Institut für Mathematik [Berlin], Technische Universität Berlin (TU), Faculté des Sciences Semlalia Marrakech, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), and Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
nonlinear expectation ,game option ,Probability (math.PR) ,stopping system ,stopping time ,saddle points ,[QFIN.CP]Quantitative Finance [q-fin]/Computational Finance [q-fin.CP] ,f -expectation ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,general filtration ,Doubly reflected BSDEs ,Optimization and Control (math.OC) ,backward stochastic differential equations ,FOS: Mathematics ,Dynkin game ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,cancellable Aperican option ,Mathematics - Optimization and Control ,Mathematics - Probability - Abstract
We formulate a notion of doubly reflected BSDE in the case where the barriers $\xi$ and $\zeta$ do not satisfy any regularity assumption and with a general filtration. Under a technical assumption (a Mokobodzki-type condition), we show existence and uniqueness of the solution. In the case where $\xi$ is right upper-semicontinuous and $\zeta$ is right lower-semicontinuous, the solution is characterized in terms of the value of a corresponding $\mathcal{E}^f$-Dynkin game, i.e. a game problem over stopping times with (non-linear) $f$-expectation, where $f$ is the driver of the doubly reflected BSDE. In the general case where the barriers do not satisfy any regularity assumptions, the solution of the doubly reflected BSDE is related to the value of ''an extension'' of the previous non-linear game problem over a larger set of ''stopping strategies'' than the set of stopping times. This characterization is then used to establish a comparison result and \textit{a priori} estimates with universal constants.
- Published
- 2018