1. Social Event Detection in Massive Mobile Phone Data Using Probabilistic Location Inference
- Author
-
F. Morlot, Arnaud Browet, Francesco Calabrese, Vincent A. Traag, Pôle en ingénierie mathématique (INMA), Université Catholique de Louvain = Catholic University of Louvain (UCL), IBM Almaden Research Center [San Jose], IBM, Theory of networks and communications (TREC), Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria), Orange Labs [Issy les Moulineaux], France Télécom, Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria Paris-Rocquencourt
- Subjects
Focus (computing) ,Event (computing) ,Computer science ,business.industry ,Bayesian probability ,0211 other engineering and technologies ,Probabilistic logic ,Mobile computing ,Inference ,021107 urban & regional planning ,02 engineering and technology ,[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH] ,Machine learning ,computer.software_genre ,Data science ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Mobile phone ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Mobile telephony ,Artificial intelligence ,business ,computer - Abstract
The unprecedented amount of data from mobile phones creates new possibilities to analyze various aspects of human behavior. Over the last few years, much effort has been devoted to studying the mobility patterns of humans. In this paper we will focus on unusually large gatherings of people, i.e. unusual social events. We introduce the methodology of detecting such social events in massive mobile phone data, based on a Bayesian location inference framework. More specifically, we also develop a framework for deciding who is attending an event. We demonstrate the method on a few examples. Finally, we discuss some possible future approaches for event detection, and some possible analyses of the detected social events.
- Published
- 2011