1. Highly active single-layer MoS2 catalysts synthesized by swift heavy ion irradiation
- Author
-
Sebastian Kunze, Henrique Vázquez Muíños, Philipp Ernst, Carl H. Naylor, B. Ban-d’Etat, Beatriz Roldan Cuenya, Abdenacer Benyagoub, Lukas Madauß, Marika Schleberger, Yong-Wook Choi, Flyura Djurabekova, Oliver Ochedowski, Meng-Qiang Zhao, A. T. Charlie Johnson, Ioannis Zegkinoglou, Henning Lebius, Erik Pollmann, Universität Duisburg-Essen [Essen], Ruhr-Universität Bochum [Bochum], Helsinki Institute of Physics and Department of Physics, Department of Physics and Astronomy [Philadelphia], University of Pennsylvania [Philadelphia], Matériaux, Défauts et IRradiations (MADIR), Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department of Interface Science [Berlin], Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI), Max Planck Society-Max Planck Society, Universität Duisburg-Essen = University of Duisburg-Essen [Essen], University of Pennsylvania, Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Department of Physics
- Subjects
GRAPHENE ,MECHANISM ,Materials science ,Ion beam ,116 Chemical sciences ,SULFUR VACANCIES ,EFFICIENT ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,Electrochemistry ,114 Physical sciences ,01 natural sciences ,law.invention ,Catalysis ,chemistry.chemical_compound ,Swift heavy ion ,MOLYBDENUM-DISULFIDE ,law ,General Materials Science ,Irradiation ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Molybdenum disulfide ,[PHYS]Physics [physics] ,SITES ,HYDROGEN EVOLUTION ,Graphene ,021001 nanoscience & nanotechnology ,Sulfur ,0104 chemical sciences ,chemistry ,0210 nano-technology - Abstract
Two-dimensional molybdenum-disulfide (MoS2) catlysts can achieve high catalytic activity for the hydrogen evolution reaction upon appropriate modification of their surface. The intrinsic inertness of the compound´s basal planes can be overcome by either increasing the number of catalytically active edge sites or by enhancing the activity of the basal planes via controlled creation of sulfur vacancies. Here, we report a novel method of activating the MoS2 surface in this respect using swift heavy ion irradiation. The creation of nanometer-scale structures by the ion beam, in combination with the partial sulfur depletion of the basal planes, leads to a large increase of the number of low-coordinated Mo atoms, which can form bonds with adsorbing species. This results in a decreased onset potential for hydrogen evolution, as well as in a significant enhance of the electrochemical current density by over 160% as compared to an identical but non-irradiated MoS2 surface.
- Published
- 2018
- Full Text
- View/download PDF