1. Role of Non-Covalent Interactions in Novel Supramolecular Compound, Bis(4-phenylpiperazin-1-ium) Oxalate Dihydrate: Synthesis, Molecular Structure, Thermal Characterization, Spectroscopic Properties and Quantum Chemical Study
- Author
-
Mahdi Jemai, Marwa Khalfi, Noureddine Issaoui, Thierry Roisnel, Aleksandr S. Kazachenko, Omar Al-Dossary, Houda Marouani, Anna S. Kazachenko, Yuriy N. Malyar, Université de Carthage - University of Carthage, Université de Monastir - University of Monastir (UM), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Siberian Federal University (SibFU), King Saud University [Riyadh] (KSU), and King Saud University, KSU
- Subjects
Inorganic Chemistry ,ultraviolet-visible spectrometry ,infrared spectrum ,oxalate ,General Chemical Engineering ,1-phenylpiperazine ,single-crystal X-ray diffraction ,quantum chemical calculations ,[CHIM]Chemical Sciences ,General Materials Science ,Condensed Matter Physics - Abstract
International audience; The stoichiometric ratio 2:1 mix of 1-phenylpiperazine and oxalic acid dihydrate followed by slow evaporation results in a new material, bis(4-phenylpiperazin-1-ium) oxalate dihydrate, with the general chemical formula (C10H15N2)2(C2O4).2H2O, indicated by PPOXH. The title compound’s asymmetric unit and three-dimensional network have been determined by single crystal X-ray diffraction. Intermolecular O-H…O, N-H…O and C-H…O hydrogen bonding assist in maintaining and stabilization of the crystal structure of this new compound. Hirshfeld surface analysis and two-dimensional fingerprints have been performed to quantify the non-covalent interactions in the PPOXH structure. The vibrational modes of the different characteristic groups of the title chemical were identified using infrared spectrum analysis. The thermal characterization of this product was studied by a coupled TG/DTA analysis. The ultraviolet-visible absorption spectrum has been used to study the optical properties and the energy gap of this compound. DFT calculations were employed to evaluate the composition and properties of PPOXH. The analysis of HOMO-LUMO frontier orbitals analysis allows us to understand the chemical reactivity of this supramolecular compound and to determine the electrophilic and nucleophilic sites responsible for electron transfer. Topological analysis (AIM), reduced density gradient (RDG), molecular electrostatic potential surface (MEPS) and Mulliken population were analyzed to evaluate the types of non-covalent interactions, localization of electrons in space, atomic charges and molecular polarity in depth. © 2023 by the authors.
- Published
- 2023
- Full Text
- View/download PDF