1. Persistent Na+ influx drives L-type channel resting Ca2+ entry in rat melanotrophs
- Author
-
Tomohiko Kayano, Nobuya Harayama, Alexei Verkhratsky, Yuto Sasaki, Naoki Kitamura, Izumi Shibuya, Govindan Dayanithi, Taiki Moriya, Mécanismes moléculaires dans les démences neurodégénératives (MMDN), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École pratique des hautes études (EPHE), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
0301 basic medicine ,Membrane potential ,Ruthenium red ,Voltage-dependent calcium channel ,Physiology ,[SDV]Life Sciences [q-bio] ,Cell Biology ,TRPV ,TRPC6 ,03 medical and health sciences ,chemistry.chemical_compound ,Melanotrophs ,030104 developmental biology ,0302 clinical medicine ,chemistry ,Extracellular ,Biophysics ,Channel blocker ,Molecular Biology ,030217 neurology & neurosurgery - Abstract
Rat melanotrophs express several types of voltage-gated and ligand-gated calcium channels, although mechanisms involved in the maintenance of the resting intracellular Ca2+ concentration ([Ca2+]i) remain unknown. We analyzed mechanisms regulating resting [Ca2+]i in dissociated rat melanotrophs by Ca2+-imaging and patch-clamp techniques. Treatment with antagonists of L-type, but not N- or P/Q-type voltage-gated Ca2+ channels (VGCCs) as well as removal of extracellular Ca2+ resulted in a rapid and reversible decrease in [Ca2+]i, indicating constitutive Ca2+ influx through L-type VGCCs. Reduction of extracellular Na+ concentration (replacement with NMDG+) similarly decreased resting [Ca2+]i. When cells were champed at –80 mV, decrease in the extracellular Na+ resulted in a positive shift of the holding current. In cell-attached voltage-clamp and whole-cell current-clamp configurations, the reduction of extracellular Na+ caused hyperpolarisation. The holding current shifted in negative direction when extracellular K+ concentration was increased from 5 mM to 50 mM in the presence of K+ channel blockers, Ba2+ and TEA, indicating cation nature of persistent conductance. RT-PCR analyses of pars intermedia tissues detected mRNAs of TRPV1, TRPV4, TRPC6, and TRPM3-5. The TRPV channel blocker, ruthenium red, shifted the holding current in positive direction, and significantly decreased the resting [Ca2+]i. These results indicate operation of a constitutive cation conductance sensitive to ruthenium red, which regulates resting membrane potential and [Ca2+]i in rat melanotrophs.
- Published
- 2019