1. Stein's method, logarithmic Sobolev and transport inequalities
- Author
-
Ivan Nourdin, Michel Ledoux, Giovanni Peccati, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Faculté des Sciences, de la Technologie et de la Communication (FSTC), ANR-10-BLAN-0121,MASTERIE,Malliavin, Stein et Equations aléatoires à coefficients irréguliers(2010), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Kullback–Leibler divergence ,Entropy ,Concentration Inequality ,60E15 ,26D10 ,60B10 ,Transport Inequality ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Convergence to Equilibrium ,Logarithmic Sobolev Inequality ,symbols.namesake ,FOS: Mathematics ,Fisher Information ,Concentration inequality ,Fisher information ,Beta distribution ,Normal Approximation ,Mathematics ,Probability (math.PR) ,Mathematical analysis ,Stein Kernel and Discrepancy ,Stein's method ,Gamma Calculus ,Functional Analysis (math.FA) ,Sobolev space ,Mathematics - Functional Analysis ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Iterated function ,symbols ,Mathematics [G03] [Physical, chemical, mathematical & earth Sciences] ,Geometry and Topology ,Invariant measure ,Mathématiques [G03] [Physique, chimie, mathématiques & sciences de la terre] ,Analysis ,Mathematics - Probability - Abstract
We develop connections between Stein's approximation method, logarithmic Sobolev and transport inequalities by introducing a new class of functional inequalities involving the relative entropy, the Stein kernel, the relative Fisher information and the Wasserstein distance with respect to a given reference distribution on $\mathbb{R}^d$. For the Gaussian model, the results improve upon the classical logarithmic Sobolev inequality and the Talagrand quadratic transportation cost inequality. Further examples of illustrations include multidimensional gamma distributions, beta distributions, as well as families of log-concave densities. As a by-product, the new inequalities are shown to be relevant towards convergence to equilibrium, concentration inequalities and entropic convergence expressed in terms of the Stein kernel. The tools rely on semigroup interpolation and bounds, in particular by means of the iterated gradients of the Markov generator with invariant measure the distribution under consideration. In a second part, motivated by the recent investigation by Nourdin, Peccati and Swan on Wiener chaoses, we address the issue of entropic bounds on multidimensional functionals $F$ with the Stein kernel via a set of data on $F$ and its gradients rather than on the Fisher information of the density. A natural framework for this investigation is given by the Markov Triple structure $(E, \mu, \Gamma)$ in which abstract Malliavin-type arguments may be developed and extend the Wiener chaos setting., Comment: 52 pages
- Published
- 2015
- Full Text
- View/download PDF