1. Targeted Tshz3 deletion in corticostriatal circuit components segregates core autistic behaviors
- Author
-
Michèle Carlier, Lucie Brosse, Pierre L. Roubertoux, Laurent Fasano, Mehdi Metwaly, Paolo Gubellini, Yasmine Belaidouni, Ahmed Fatmi, Pascal Salin, Dorian Chabbert, Jordan Molitor, Xavier Caubit, Lydia Kerkerian-Le Goff, Institut de Biologie du Développement de Marseille (IBDM), Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Centre National de la Recherche Scientifique (CNRS), Marseille medical genetics - Centre de génétique médicale de Marseille (MMG), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire de psychologie cognitive (LPC), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE16-0030,TSHZ3inASD,Rôle de TSHZ3 dans le développement et la fonction de systèmes neuronaux impliqués dans les troubles du spectre autistique(2017), Gubellini, Paolo, Rôle de TSHZ3 dans le développement et la fonction de systèmes neuronaux impliqués dans les troubles du spectre autistique - - TSHZ3inASD2017 - ANR-17-CE16-0030 - AAPG2017 - VALID, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Aix-Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France, and ANR-17-EURE-0029,nEURo*AMU,Marseille NeuroSchool, une formation d'excellence(2017)
- Subjects
striatal cholinergic interneurons ,Autism Spectrum Disorder ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,[SDV]Life Sciences [q-bio] ,MESH: Autistic Disorder ,Striatum ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Haploinsufficiency ,Biology ,MESH: Synapses ,Cellular and Molecular Neuroscience ,03 medical and health sciences ,Mice ,0302 clinical medicine ,stereotyped behaviors ,Interneurons ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Conditional gene knockout ,medicine ,Animals ,MESH: Animals ,[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Autistic Disorder ,MESH: Mice ,Biological Psychiatry ,030304 developmental biology ,MESH: Autism Spectrum Disorder ,0303 health sciences ,[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,medicine.disease ,MESH: Interneurons ,Autism spectrum disorder (ASD) ,cortical projection neurons ,Psychiatry and Mental health ,Electrophysiology ,TSHZ3 ,sociability ,medicine.anatomical_structure ,nervous system ,Autism spectrum disorder ,Cerebral cortex ,Synapses ,[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Cholinergic ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,MESH: Haploinsufficiency ,Neuroscience ,030217 neurology & neurosurgery - Abstract
We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. We show that in the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABA interneurons, while not in cholinergic interneurons or glial cells. TSHZ3-expressing cells, which are predominantly SCINs in the striatum, represent a low proportion of neurons in the ascending cholinergic projection system. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and plasticity at corticostriatal synapses, with neither cortical neuron loss nor impaired layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.
- Published
- 2021
- Full Text
- View/download PDF