1. A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus
- Author
-
Christian, Dupont, Albertus, Viljoen, Faustine, Dubar, Mickaël, Blaise, Audrey, Bernut, Alexandre, Pawlik, Christiane, Bouchier, Roland, Brosch, Yann, Guérardel, Joël, Lelièvre, Lluis, Ballell, Jean-Louis, Herrmann, Christophe, Biot, Laurent, Kremer, Infection et inflammation (2I), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre d’études d’Agents Pathogènes et Biotechologies pour la Santé (CPBS), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Pathogénomique mycobactérienne intégrée - Integrated Mycobacterial Pathogenomics, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Génopole, Institut Pasteur [Paris], GlaxoSmithKline, Glaxo Smith Kline, This study was supported by the French National Research Agency (http://www.agence-nationale-recherche.fr/) (DIMYVIR ANR‐13‐BSV3‐0007‐01). We wish also to thank the Association Gregory Lemarchal and Vaincre La Mucoviscidose (RF20130500835) for funding CD and the InfectioPôle Sud for funding AV. LK and RB acknowledge the support by the Fondation pour la Recherche Médicale (FRM) (DEQ20150331719 and DEQ20130326471). This study was funded by grant from the Université de Lille1 (Bonus Qualité Recherche) to FD., ANR-13-BSV3-0007,DIMYVIR,Identification et Visualisation des Mécanismes Permettant l'Acquisition d'un Phénotype Invasif chez les Mycobactéries Pathogènes à Croissance Rapide(2013), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP), Infection et inflammation chronique (2I), Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), and Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
Binding Sites ,[SDV]Life Sciences [q-bio] ,Antitubercular Agents ,Mycobacterium Infections, Nontuberculous ,Nontuberculous Mycobacteria ,MESH: Mycolic Acids ,MESH: Mycobacterium Infections, Nontuberculous ,MESH: Antitubercular Agents ,Disease Models, Animal ,MESH: Piperidines ,Mycolic Acids ,Piperidines ,MESH: Binding Sites ,MESH: Nontuberculous Mycobacteria ,Animals ,MESH: Animals ,MESH: Disease Models, Animal ,MESH: Zebrafish ,Zebrafish - Abstract
International audience; The natural resistance of Mycobacterium abscessus to most commonly available antibiotics seriously limits chemotherapeutic treatment options, which is particularly challenging for cystic fibrosis patients infected with this rapid-growing mycobacterium. New drugs with novel molecular targets are urgently needed against this emerging pathogen. However, the discovery of such new chemotypes has not been appropriately performed. Here, we demonstrate the utility of a phenotypic screen for bactericidal compounds against M. abscessus using a library of compounds previously validated for activity against M. tuberculosis. We identified a new piperidinol-based molecule, PIPD1, exhibiting potent activity against clinical M. abscessus strains in vitro and in infected macrophages. Treatment of infected zebrafish with PIPD1 correlated with increased embryo survival and decreased bacterial burden. Whole genome analysis of M. abscessus strains resistant to PIPD1 identified several mutations in MAB_4508, encoding a protein homologous to MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis was unaffected, PIPD1 strongly inhibited the transport of trehalose monomycolate, thereby abrogating mycolylation of arabinogalactan. Mapping the mutations conferring resistance to PIPD1 on a MAB_4508 tridimensional homology model defined a potential PIPD1-binding pocket. Our data emphasize a yet unexploited chemical structure class against M. abscessus infections with promising translational development possibilities.
- Published
- 2016
- Full Text
- View/download PDF