1. Local search with weighting schemes for the CG:SHOP 2022 competition
- Author
-
Fontan, Florian, Lafourcade, Pascal, Libralesso, Luc, Momège, Benjamin, Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), and Atoptima
- Subjects
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC] ,digital geometry ,vertex coloring ,heuristics ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] - Abstract
International audience; This paper describes the heuristics used by the LASAOFOOFUBESTINNRRALLDECA 1 team for the CG:SHOP 2022 challenge. We introduce a new greedy algorithm that exploits information about the challenge instances, and hybridize two classical local-search schemes with weighting schemes. We found 211/225 best-known solutions. Hence, with the algorithms presented in this article, our team was able to reach the 3rd place of the challenge, among 40 participating teams.
- Published
- 2022
- Full Text
- View/download PDF