1. Quality assessment of predicted protein models using energies calculated by the fragment molecular orbital method
- Author
-
Kam Yj Zhang, Shinichiro Nakamura, Hiroya Nakata, Koji Ogata, David Simoncini, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), RIKEN Center for Life Science Technologies (RIKEN CLST), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), RIKEN Cluster for Science, Technology and Innovation Hub (RCSTI), Tokyo Institute of Technology [Tokyo] (TITECH), Japanese Society for the Promotion of Science Fellow, JSPS - KAKENHI Grant Number 262235, Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE)
- Subjects
Models, Molecular ,Pair interaction energy ,Structure prediction Quality assessment ,010402 general chemistry ,Model selection ,01 natural sciences ,Measure (mathematics) ,Structural Biology ,Computational chemistry ,0103 physical sciences ,Drug Discovery ,[INFO]Computer Science [cs] ,Statistical physics ,Quantitative Biology::Biomolecules ,010304 chemical physics ,Chemistry ,Organic Chemistry ,Proteins ,Function (mathematics) ,Protein structure prediction ,0104 chemical sciences ,Computer Science Applications ,Structural biology ,Thermodynamics ,Molecular Medicine ,GAMESS ,Fragment molecular orbital ,Energy (signal processing) - Abstract
International audience; Protein structure prediction directly from sequences is a very challenging problem in computational biology. One of the most successful approaches employs stochastic conformational sampling to search an empirically derived energy function landscape for the global energy minimum state. Due to the errors in the empirically derived energy function, the lowest energy conformation may not be the best model. We have evaluated the use of energy calculated by the fragment molecular orbital method (FMO energy) to assess the quality of predicted models and its ability to identify the best model among an ensemble of predicted models. The fragment molecular orbital method implemented in GAMESS was used to calculate the FMO energy of predicted models. When tested on eight protein targets, we found that the model ranking based on FMO energies is better than that based on empirically derived energies when there is sufficient diversity among these models. This model diversity can be estimated prior to the FMO energy calculations. Our result demonstrates that the FMO energy calculated by the fragment molecular orbital method is a practical and promising measure for the assessment of protein model quality and the selection of the best protein model among many generated.
- Published
- 2015
- Full Text
- View/download PDF