1. Tight-binding modelling of layered halide perovskites
- Author
-
Thébaud, Simon, Cucco, Bruno, Quarti, Claudio, Volonakis, George, Pedesseau, Laurent, Kepenekian, Mikaël, Katan, Claudine, Even, Jacky, Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Mons (UMons), and ANR-22-MER3-0006,PHANTASTIC,PHysics- and dAta-driven multiscale modelling desigN of layered lead halide perovskiTe mAterials for Stable phoTovoltaICs(2022)
- Subjects
[PHYS]Physics [physics] - Abstract
International audience; In recent years, layered heterostructures of halide perovskites have emerged as promising optoelectronic systems due to their tunability and to the presence of strong excitonic effects [1], with potential applications for efficient light emission, spintronics, single-photon emission and photonic logic. This last technology is being developped by the H2020 POLLOC (polariton logic) consortium using exciton-polariton devices. From the theoretical point of view, first-principles studies of exciton physics in layered halide pervoskites are possible [2] but severely constrained by system size. To go beyond this limitation, symmetry-based semi-empirical tight-binding models have provided an efficient description of the electronic structure and optical properties of bulk halide perovskites [3-5]. In this talk, we will discuss such models and their extension to the case of layered perovskites, a stepping stone towards a robust description of excitons in these compounds within the tight-binding framework [6,7].[1] J.-C. Blancon et al., Nature Comm. 9, 2254 (2018) [2] C. Quarti et al., Adv. Optical Mater. 2023, 2202801[3] S. Boyer-Richard et al., J. Phys. Chem. Lett. 7, 3833 (2016)[4] A. Marronnier et al., ACS Nano 12, 3477 (2018)[5] Z. Wei et al., Nature Comm. 10, 5342 (2019) [6] R. Benchamekh et al., Phys. Rev. B 91, 045118 (2015)[7] Y. Cho et al., Phys. Chem. Lett. 10, 6189 (2019)This work was supported by the M-ERANET grant PHANTASTIC Call 2021.
- Published
- 2023