1. Collision-induced dissociation pathways of protonated Gly2NH2 and Gly3NH2 in the short time-scale limit by chemical dynamics and ion spectroscopy
- Author
-
Kihyung Song, Jonathan Martens, Jos Oomens, Riccardo Spezia, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE - UMR 8587), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Université d'Évry-Val-d'Essonne (UEVE)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine, Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Van't Hoff Institute for Molecular Sciences, University of Amsterdam [Amsterdam] (UvA), Department of Chemistry, Korea National University of Education, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Molecular Spectroscopy (HIMS, FNWI), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), van ‘t Hoff Institute for Molecular Sciences, and Universiteit van Amsterdam (UvA)
- Subjects
Collision-induced dissociation ,Molecular Structure and Dynamics ,Chemistry ,010401 analytical chemistry ,Protonation ,010402 general chemistry ,Condensed Matter Physics ,01 natural sciences ,Dissociation (chemistry) ,0104 chemical sciences ,Chemical Dynamics ,Ion ,Fragmentation (mass spectrometry) ,Chemical physics ,Computational chemistry ,Potential energy surface ,Infrared multiphoton dissociation ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Physical and Theoretical Chemistry ,Instrumentation ,Spectroscopy - Abstract
International audience; In this work we have studied the collision induced dissociation (CID) of C-terminally amidated, protonated di- and tri-glycine by means of chemical dynamics simulations from on-the-fly electronic structure calculations using a semi-empirical Hamiltonian. The simulations represent a collision event between the peptide and an Ar-atom addressing the reactivity at “short” time-scales, i.e. up to 5 ps. Simulations were performed for different protonation sites, greatly influencing the reactivity in agreement with what is known from the “mobile proton” model of peptide dissociation. Results are then combined with ESI-MS/MS experiments to determine the fragmentation patterns. Additionally, we used IRMPD spectra to elucidate the structure of these peptides before collisional activation and the structures of some of the CID products. Results are also compared with threshold CID experiments reported in the literature for the non-amidated peptides.Chemical dynamics simulations can provide details on the fragmentation pathways observed. We also show that it is possible to identify the protonation state(s) that are populated in the different steps involved in the fragmentation process. Finally, the chemical dynamics approach is shown to be complementary to the more typical theoretical study of the potential energy surface that becomes more problematic (and sometimes impossible) for systems of increasing complexity.
- Published
- 2015
- Full Text
- View/download PDF