1. Monitoring ion beam therapy with a Compton Camera: simulation studies of the clinical feasibility
- Author
-
Etienne Testa, J.-L. Ley, I. Rinaldi, J. Krimmer, Jean Michel Létang, Mattia Fontana, M.-H. Richard, Nicolas Freud, Voichita Maxim, Denis Dauvergne, Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Physics ,[PHYS]Physics [physics] ,Particle therapy ,Ion beam ,business.industry ,medicine.medical_treatment ,Detector ,Monte Carlo method ,Physics::Medical Physics ,Dose profile ,Atomic and Molecular Physics, and Optics ,Imaging phantom ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Optics ,030220 oncology & carcinogenesis ,medicine ,Radiology, Nuclear Medicine and imaging ,business ,Instrumentation ,Beam (structure) ,Event reconstruction - Abstract
As more and more particle therapy centers are being built world-wide, there is increasing need in treatment monitoring methods, ideally in real time. This article investigates the clinical applicability of a Compton camera design by means of Monte Carlo simulations. The Compton camera performance has been studied with the simulation of point-like source and beam irradiation of a polymethyl methacrylate (PMMA) phantom. The system absolute photon detection efficiency, measured via source irradiation, varies in the range [1, 4] $\times 10^{-4}$ with energy variations in the prompt gamma (PG) energy range and source position shifts with respect to the center of the camera. With proton and carbon beams impinging on a PMMA cylindrical phantom, the number of detected PG coincidences related to various beam time structure has been studied. Finally, the accuracy of the camera in identifying the dose profile fall-off position has been estimated and two different event reconstruction methods have been compared for this purpose; one based on analytical calculation with a line-cone technique, the second relying on an iterative maximum likelihood expectation maximization algorithm. Both methods showed the possibility to reconstruct the beam depth-dose profile and to retrieve the dose fall-off with millimeter precision on a spot basis.
- Published
- 2020