1. Icteric human samples: Icterus index and method of estimating an interference-free value for 16 biochemical analyses
- Author
-
Guy Gomez, Anne-Marie Lorec, Alain Nicolay, Henri Portugal, Nutriments Lipidiques et Prévention des Maladies Métaboliques, Université de la Méditerranée - Aix-Marseille 2-Institut National de la Recherche Agronomique (INRA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Nutrition, obésité et risque thrombotique (NORT), Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre recherche en CardioVasculaire et Nutrition (C2VN), Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre recherche en CardioVasculaire et Nutrition = Center for CardioVascular and Nutrition research (C2VN), and Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de la Recherche Agronomique (INRA)-Université de la Méditerranée - Aix-Marseille 2
- Subjects
0301 basic medicine ,Microbiology (medical) ,030213 general clinical medicine ,Analyte ,icterus index ,Bilirubin ,[SDV]Life Sciences [q-bio] ,Clinical Biochemistry ,interference ,Jaundice ,Hyperlipidemias ,Hemolysis ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Phos ,Immunology and Allergy ,Humans ,biochemistry ,Research Articles ,Creatinine ,Chromatography ,biology ,Biochemistry (medical) ,Public Health, Environmental and Occupational Health ,Albumin ,Reproducibility of Results ,Hematology ,biology.organism_classification ,Medical Laboratory Technology ,030104 developmental biology ,Fructosamine ,chemistry ,Biochemistry ,Linear Models ,Uric acid ,Alkaline phosphatase ,correction ,bilirubin ,Biomarkers ,Blood Chemical Analysis - Abstract
BACKGROUND: Hemolysis, Icterus, and Lipemia constituting the HIL index, are the most common causes of interference with accurate measurement in biochemistry. This study focuses on bilirubin interference, aiming to identify the analyses impacted and proposing a way to predict nominal interference‐free analyte concentrations, based on both analyte level and Icterus Index (I (ict)). METHODS: Sixteen common analytes were studied: alanine aminotransferase (ALT), albumin (ALB), alkaline phosphatase (ALP), amylase (AMY), aspartate aminotransferase (AST), total cholesterol (CHOLT), creatinine (CREA, enzymatic method), fructosamine (FRUC), gamma‐glutamyl transferase (GGT), HDL cholesterol (HDLc), total iron (Iron), lipase (LIP), inorganic phosphorus (Phos), total protein (PROT), triglycerides (TG), and uric acid (UA). Both the traditional 10% change in concentrations from baseline and the Total Change Level (TCL) were taken as acceptance limits. Nineteen pools of sera covering a wide range of values were tested on the Cobas® 6000 (Roche Diagnostics). I (ict) ranged from 0 to 60. RESULTS: Eight analytes increased (FRUC and Phos) or decreased (CHOLT, CREA, HDLc, PROT, TG, and UA) significantly when I (ict) increased. FRUC, HDLc, PROT, and UA showed a linear relationship when I (ict) increased. A non‐linear relationship was found for TG, CREA, and for CHOLT; this also depended on analyte levels. Others were not impacted, even at high I (ict). CONCLUSIONS: A method of estimating an interference‐free value for FRUC, HDLc, PROT, Phos, UA, TG, and CREA, and for CHOLT in cases of cholestasis, is proposed. I (ict) levels are identified based on analytical performance goals, and equations to recalculate interference‐free values are also proposed.
- Published
- 2018
- Full Text
- View/download PDF