1. The reversal of the rotational modulation rates of the north and south components of Saturn kilometric radiation near equinox
- Author
-
Gurnett, Donald A., Groene, J. B., Persoon, A. M., Menietti, J., Ye, Sheng-Yi, Kurth, William S., Macdowell, R. J., Lecacheux, Alain, Department of Physics and Astronomy, Iowa State University, NASA/Goddard Space Flight Center (NASA/GSFC), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Physique des plasmas, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; It has been known for many years that Saturn emits intense radio emissions at kilometer wavelengths and that this radiation is modulated by the rotation of the planet at a rate that varies slowly on time scales of years. Recently it has been shown that the radio emission consists of two components that have different rotational modulation rates, one emitted from the northern auroral region and the other emitted from the southern auroral region. In this paper we show using radio measurements from the Cassini spacecraft that the rotational modulation rates of the northern and southern components reversed near Saturn's recent equinox, which occurred on 11 August 2009. We show that a similar reversal was also observed by the Ulysses spacecraft near the previous equinox, which occurred on 19 November 1995. The solar control implied by these reversals has important implications on how Saturn's rotation is coupled into the magnetosphere.
- Published
- 2010
- Full Text
- View/download PDF