1. Reflective Electroabsorption Modulators for Beyond 25 Gb/s Colorless Transmissions
- Author
-
Kebede Atra, Karim Mekhazni, F. Martin, Cosimo Calo, Catherine Fortin, F. Pommereau, Mohand Achouche, Christophe Caillaud, E. Derouin, Cédric Ware, Arnaud Wilk, Jean Decobert, Carmen Gomez, Jean-Guy Provost, Fabrice Blache, Giancarlo Cerulo, Didier Erasme, Franck Mallecot, Alcatel-Thales III-V Lab (III-V Lab), THALES, Télécommunications Optiques (GTO), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Département Communications & Electronique (COMELEC), Télécom ParisTech, and Institut Polytechnique de Paris (IP Paris)
- Subjects
Optical amplifier ,Frequency response ,Reflective EAM-SOA ,Optical fiber ,Materials science ,Colorless Transmitter ,business.industry ,Heterojunction ,Atomic and Molecular Physics, and Optics ,law.invention ,Wavelength ,law ,Modulation ,Dispersion (optics) ,Chirp ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,business ,Electroabsorption Modulator - Abstract
International audience; We present a complete characterization of reflective electroabsorption modulators (EAMs) monolithically integrated with semiconductor optical amplifiers (SOAs), components that are capable of operating beyond 50 Gb/s in the C-band. The devices are based on GaInAsP multiple quantum wells on InP substrate, leveraging semi-insulating buried heterostructure waveguide definition and butt-joint integration technologies. Different device configurations, based on 80-μm and 150-μm long EAMs, are fabricated and characterized in both static and dynamic modes. The frequency response of the 80-μm long EAM is still flat at 26.5 GHz (setup upper limit) whereas the 150-μm long EAM exhibits a 3-dB cutoff bandwidth of 23 GHz. A zero-chirp is achieved for EAM reverse bias voltages between −1.2 V and −1.5 V depending on the wavelength. Under large-signal modulation, the frequency chirp induced by the shorter EAM is almost half that of the longer EAM, with their respective peak values being +1.5/−2 GHz and +3.2/−3.7 GHz (rising/falling edges) at 1545 nm (−1.3 V bias, 2.6 V voltage swing). We obtained high dynamic extinction ratios of ~14.5 dB and ~8 dB from the longer and the shorter EAMs, respectively, when they are operated at 25 Gb/s using non-return-to-zero coding. Finally, we achieved 12 km and 16 km colorless transmissions in the C-band (between 1530 nm and 1545 nm) over a standard single-mode fiber without equalization using the 150-μm and the 80-μm EAMs, respectively, with 4.5 dB and 2.5 dB dispersion penalties at a bit error rate of 10E−3.
- Published
- 2021