1. Non semi-simple TQFTs, Reidemeister torsion and Kashaev's invariants
- Author
-
Nathan Geer, Francesco Costantino, Bertrand Patureau-Mirand, Christian Blanchet, Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques de Bretagne Atlantique (LMBA), Université de Brest (UBO)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques et Applications des Mathématiques, EA 3885 ( LMAM ), Université de Bretagne Sud ( UBS ), Institut de Mathématiques de Toulouse UMR5219 ( IMT ), Université Toulouse 1 Capitole ( UT1 ) -Université Toulouse - Jean Jaurès ( UT2J ) -Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-PRES Université de Toulouse-Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Mathématiques de Bretagne Atlantique ( LMBA ), Université de Brest ( UBO ) -Université de Bretagne Sud ( UBS ) -Centre National de la Recherche Scientifique ( CNRS ), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE40-0017,Quantact,Topologie quantique et géométrie de contact(2016), and ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011)
- Subjects
[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT] ,Torsion ,Pure mathematics ,Root of unity ,General Mathematics ,01 natural sciences ,Mathematics::Algebraic Topology ,Mathematics - Geometric Topology ,Mathematics::Quantum Algebra ,Mathematics::Category Theory ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,math.GT ,Quantum Algebra (math.QA) ,0101 mathematics ,Invariant (mathematics) ,Mathematics ,Monoidal functor ,Topological quantum field theory ,Functor ,010102 general mathematics ,Geometric Topology (math.GT) ,Mathematics::Geometric Topology ,TQFT ,Nilpotent ,57M27, 57R56 ,Torsion (algebra) ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,010307 mathematical physics ,math.QA ,Math and Math Physics ,Vector space - Abstract
We construct and study a new family of TQFTs based on nilpotent highest weight representations of quantum sl(2) at a root of unity indexed by generic complex numbers. This extends to cobordisms the non-semi-simple invariants defined in (arXiv:1202.3553) including the Kashaev invariant of links. Here the modular category framework does not apply and we use the ``universal construction''. Our TQFT provides a monoidal functor from a category of surfaces and their cobordisms into the category of graded finite dimensional vector spaces and their degree 0-morphisms and depends on the choice of a root of unity of order 2r. The functor is always symmetric monoidal but for even values of r the braiding on GrVect has to be the super-symmetric one, thus our TQFT may be considered as a super-TQFT. In the special case r=2 our construction yields a TQFT for a canonical normalization of Reidemeister torsion and we re-prove the classification of Lens spaces via the non-semi-simple quantum invariants defined in (arXiv:1202.3553). We prove that the representations of mapping class groups and Torelli groups resulting from our constructions are potentially more sensitive than those obtained from the standard Reshetikhin-Turaev functors; in particular we prove that the action of the bounding pairs generators of the Torelli group has always infinite order., Comment: 63 pages, 40 figures
- Published
- 2016
- Full Text
- View/download PDF