1. Asymptotics for the maximum sample likelihood estimator under informative selection from a finite population
- Author
-
Daniel Bonnéry, François Coquet, F. Jay Breidt, Centre de Recherche en Économie et Statistique (CREST), Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)-École polytechnique (X)-École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris)-Centre National de la Recherche Scientifique (CNRS), Department of Statistics, Colorado State University [Fort Collins] (CSU), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Centre de Recherche en Économie et Statistique ( CREST ), Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] ( ENSAI ) -École polytechnique ( X ) -École Nationale de la Statistique et de l'Administration Économique ( ENSAE ParisTech ), Colorado State University [Fort Collins] ( CSU ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Statistics and Probability ,Complex survey ,weighted distribution ,Estimation theory ,Restricted maximum likelihood ,05 social sciences ,050401 social sciences methods ,Estimator ,Asymptotic distribution ,Conditional probability distribution ,stratified sampling ,16. Peace & justice ,01 natural sciences ,Likelihood principle ,Pseudo-likelihood ,010104 statistics & probability ,0504 sociology ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Statistics ,[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST] ,0101 mathematics ,Likelihood function ,Selection (genetic algorithm) ,Mathematics - Abstract
International audience; Inference for the parametric distribution of a response given covariates is considered under informative selection of a sample from a finite population. Under this selection, the conditional distribution of a response in the sample, given the covariates and given that it was selected for observation, is not the same as the conditional distribution of the response in the finite population, given only the covariates. It is instead a weighted version of the conditional distribution of interest. Inference must be modified to account for this informative selection. An established approach in this context is maximum “sample likelihood”, developing a weight function that reflects the informative sampling design, then treating the observations as if they were independently distributed according to the weighted distribution. While the sample likelihood methodology has been widely applied, its theoretical foundation has been less developed. A precise asymptotic description of a wide range of informative selection mechanisms is proposed. Under this framework, consistency and asymptotic normality of the maximum sample likelihood estimators are established. The theory allows for the possibility of nuisance parameters that describe the selection mechanism. The proposed regularity conditions are verifiable for various sample schemes, motivated by real problems in surveys. Simulation results for these examples illustrate the quality of the asymptotic approximations, and demonstrate a practical approach to variance estimation that combines aspects of model-based information theory and design-based variance estimation.
- Published
- 2018
- Full Text
- View/download PDF