12 results on '"Eynard, Sonia"'
Search Results
2. GENOME WIDE ASSOCIATION STUDY ON VARROA RESISTANCE TRAITS IN FRENCHHONEYBEE POPULATIONS
- Author
-
Eynard, Sonia, Vignal, Alain, Basso, Benjamin, Bouchez, Olivier, Bulach, Tabatha, Canale-Tabet, Kamila, Le Conte, Yves, Dainat, Benjamin, Decourtye, Axel, Genestout, Lucie, Guichard, Mattieu, Guillaume, Francois, Labarthe, Emmanuelle, Mahla, Rachid, Mondet, Fanny, Neuditschko, Marcus, Phocas, Florence, Poquet, Yannick, Sann, Christina, Serre, Rémi-Félix, Servin, Bertrand, and Vignal, Alain
- Subjects
[SDV.GEN.GA] Life Sciences [q-bio]/Genetics/Animal genetics - Published
- 2022
3. Identification of quantitative trait loci associated with calmness and gentleness in honey bees using whole‐genome sequences
- Author
-
Guichard, Matthieu, Dainat, Benjamin, Eynard, Sonia, Vignal, Alain, Servin, Bertrand, Beestrong Consortium, the, Neuditschko, Markus, Mahla, Rachid, Poquet, Yannick, Guillaume, François, Le Conte, Yves, Basso, Benjamin, Phocas, F., Olivier, Bouchez, Agroscope, Génétique Physiologie et Systèmes d'Elevage (GenPhySE ), Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMT PrADE, Bundesamt für Landwirschaft BLW (Swiss Federal Office for Agriculture FOAG), FranceAgrimer (Programme d'Investissements d'Avenir), Labogena, and ANR-10-INBS-0009,France-Génomique,Organisation et montée en puissance d'une Infrastructure Nationale de Génomique(2010)
- Subjects
0301 basic medicine ,Quantitative Trait Loci ,Genome-wide association study ,Quantitative trait locus ,Biology ,lap4 protein ,Genome ,03 medical and health sciences ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Genetic variation ,Genetics ,Animals ,GWAS ,Abscam ,Domestication ,Gene ,Genetic association ,[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,Full Paper ,Whole Genome Sequencing ,0402 animal and dairy science ,food and beverages ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,04 agricultural and veterinary sciences ,General Medicine ,Full Papers ,Bees ,040201 dairy & animal science ,Phenotype ,pool sequences ,Aggression ,[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology ,030104 developmental biology ,behavior and behavior mechanisms ,Animal Science and Zoology ,Apis mellifera ,Beekeeping ,Genome-Wide Association Study - Abstract
International audience; The identification of quantitative trait loci (QTL) through genome-wide association studies (GWAS) is a powerful method for unravelling the genetic background of selected traits and improving early-stage predictions. In honey bees (Apis mellifera), past genetic analyses have particularly focused on individual queens and workers. In this study, we used pooled wholegenome sequences to ascertain the genetic variation of the entire colony. In total, we sampled 216 Apis mellifera mellifera and 28 Apis mellifera carnica colonies. Different experts subjectively assessed the gentleness and calmness of the colonies using a standardised protocol. Conducting a GWAS for calmness on 211 purebred A. m. mellifera colonies, we identified three QTL, on chromosomes 8, 6, and 12. The two first QTL correspond to LOC409692 gene, coding for a disintegrin and metalloproteinase domain-containing protein 10, and to Abscam gene, coding for a Dscam family member Abscam protein, respectively. The last gene has been reported to be involved in the domestication of A. mellifera. The third QTL is located 13 kb upstream of LOC102655631, coding for a trehalose transporter. For gentleness, two QTL were identified on chromosomes 4 and 3. They are located within gene LOC413669, coding for a lap4 protein, and gene LOC413416, coding for a bicaudal C homolog 1-B protein, respectively. The identified positional candidate genes of both traits mainly affect the olfaction and nervous system of honey bees. Further research is needed to confirm the results and to better understand the genetic and phenotypic basis of calmness and gentleness.
- Published
- 2021
- Full Text
- View/download PDF
4. MOSAR -Méthodes et Outils pour la Sélection d'Abeilles Résistantes à Varroa
- Author
-
Basso, Benjamin, Eynard, Sonia, Vignal, Alain, Beguin, Maxime, Guirao, Anne-Laure, Le Conte, Yves, Servin, Bertrand, Decourtye, Axel, Mondet, Fanny, ITSAP-Institut de l'Abeille, ITSAP, Abeilles et Environnement (AE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMT PrADE, Génétique Physiologie et Systèmes d'Elevage (GenPhySE ), Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
resistance ,[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology ,Varroa ,[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,beekeeping production ,Abeilles domestiques ,Honeybee ,parasite ,selection ,sélection ,[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology ,résistance ,apiculture - Abstract
International audience; Varroa destructor is one of the main pests of the honeybee Apis mellifera, causing severe colony losses worldwide. Chemical treatments are available to reduce infestation, but they are currently experiencing significant limits. Thus, breeding and selection of bees naturally resistant to Varroa appears as a very promising solution.Several selection criteria for Varroa resistance have been developed and validated by research laboratories. The first objective of this project was therefore to provide technical references to professional beekeepers in order to implement these measures in a relevant manner under production conditions. However, until now, there is no method to estimate the resistance potential of a colony with a simple, reliable, rapid way and without a high rate of parasitism. MOSAR therefore also had the objective of developing new tools for technicians and beekeepers: the development of a simple phenotyping system of VSH behavior ans the search for genetic markers of resistance.This work began with the evaluation under conventional beekeeping production conditions of methods for evaluating the resistance of colonies to Varroa mite developed and validated under experimental conditions. The monitoring and phenotyping of 120 colonies throughout the project identified all the advantages and disadvantages of each method for large-scale implementation. The expertise acquired also made it possible to optimize these methods for use by beekeepers while maintaining the reliability essential for use in breeding. Technical sheets presenting these different criteria, detailing the equipment and skills required, as well as the different stages and critical points were widely distributed.At the same time, the development of a method using chemical compounds to estimate the resistance of a colony to Varroa has made significant progress. Likewise, the search for genetic markers of Varroa resistance relied on the MOSAR project to progress on several methodological aspects.This project has already paved the way for the integration of resistance criteria to Varroa in breeding programs used in beekeeping and the additional work in progress should amplify this impact over time.; L'acarien Varroa destructor est l'un des principaux parasites de l'abeille domestique Apis mellifera, causant d'importantes pertes de colonies à l'échelle mondiale. Des traitements chimiques sont disponibles afin de freiner la progression de l'infestation mais ils connaissent actuellement des limites significatives. Ainsi, la sélection et l'élevage d'abeilles naturellement résistantes au Varroa apparaît comme une solution très prometteuse. Plusieurs critères de sélection pour la résistance au Varroa ont été développés par des laboratoires de recherche. Le premier objectif de ce projet était donc de fournir à la filière des références techniques afin de mettre en oeuvre ces mesures de manière pertinente dans des conditions de production. Pour autant, actuellement, il n’existe pas de méthode pour estimer le potentiel de résistance d’une colonie de manière simple, fiable, rapide et sans un taux de parasitisme élevé. MOSAR avait donc également comme objectif d’avancer dans la mise au point de nouveaux outils à destination des techniciens et des apiculteurs : le développement d’un système de phénotypage simple du comportement VSH et la recherche de marqueurs génétiques de résistance.Ce travail a démarré par l’évaluation dans des conditions de production apicole classiques des méthodes permettant d’évaluer la résistance des colonies au Varroa, mises au point et validées dans des conditions expérimentales. Le suivi et le phénotypage de 120 colonies sur l’ensemble du projet a permis d’identifier les avantages et les inconvénients de chaque méthode pour une mise en oeuvre à grande échelle. L’expertise acquise a également permis d’optimiser ces méthodes en vue d’une utilisation par les apiculteurs tout en conservant la fiabilité indispensable en vue d’une utilisation en sélection. Des fiches techniques présentant ces différents critères en détaillant le matériel et les compétences nécessaires ainsi que les différentes étapes et les points critiques ont été diffusées largement.En parallèle, la mise au point d’une méthode utilisant des composés chimiques pour estimer la résistance d’une colonie au Varroa a nettement progressé. De même, la recherche de marqueurs génétiques de la résistance à Varroa s’est appuyée sur le projet MOSAR pour progresser sur plusieurs aspects méthodologiques.Ce projet a déjà ouvert la voie à l’intégration de critères de résistance au Varroa dans les programmes de sélection utilisés en apiculture et les travaux complémentaires en cours devraient amplifier cet impact à terme.
- Published
- 2021
- Full Text
- View/download PDF
5. Population structure of French honey bees from sequencing a large panel of haploid drones
- Author
-
Vignal, Alain, Eynard, Sonia, Servin, Bertrand, Canale-Tabet, Kamila, Basso, Benjamin, Le Conte, Yves, Wragg, David, and Vignal, Alain
- Subjects
[SDV.GEN.GPO] Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,[SDV.GEN.GA] Life Sciences [q-bio]/Genetics/Animal genetics - Published
- 2021
6. The value of conserved samples in gene banks for animal breeding in the MRIJ cattle breed
- Author
-
Eynard, Sonia, Calus, Mario P.L., Hulsegge, Ina, Hiemstra, Sipke-Joost, Windig, Jack J., Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Animal Breeding and Genetics, Wageningen University and Research [Wageningen] (WUR), Center for Genetic Resources, Centre for Genetic Resources, Animal Breeding and Genomics, and AgroParisTech-Institut National de la Recherche Agronomique (INRA)
- Subjects
[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] ,cattle breed ,breeding ,genetic ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
7. BeeStrong: towards a genomic tool for the selection of Varroa resistant honey bees
- Author
-
Sann, Christina, POQUET, Yannick, Basso, Benjamin, Mondet, Fanny, Eynard, Sonia, Servin, Bertrand, Phocas, Florence, François, Guillaume, Bidanel, Jean Pierre, Moulay-Cluzeau, Sophie, ProdInra, Migration, Abeilles & Environnement (UR 406 ), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'analyses, Génétique Physiologie et Systèmes d'Elevage (GenPhySE ), École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, EVOLUTION, and ITSAP
- Subjects
[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] ,[SDV.OT] Life Sciences [q-bio]/Other [q-bio.OT] ,apidology ,selection ,genetic ,genome ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
8. Updating reference population in Genomic Selection for genetic diversity conservation What can we learn from real data and simulations?
- Author
-
Eynard, Sonia, Croiseau, Pascal, Laloë, Denis, Calus, Mario P.L., Fritz, Sebastien, Restoux, Gwendal, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Animal Breeding and Genomics, Wageningen University and Research [Wageningen] (WUR), Center for Genetic Resources, and Centre for Genetic Resources
- Subjects
genomic ,[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] ,conservation ,selection ,genetic ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2017
9. Which individual to phenotype? Optimal design of reference population for genomic selection while maintaining genetic diversity
- Author
-
Eynard, Sonia, Laloë, Denis, Croiseau, Pascal, Calus, Mario P. L., Fritz, Sebastien, Restoux, Gwendal, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Wageningen University and Research Centre (WUR), Center for Genetic Resources, Centre for Genetic Resources, Animal Breeding and Genomics, and Wageningen University and Research [Wageningen] (WUR)
- Subjects
genomic ,[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] ,selection ,genetic ,ComputingMilieux_MISCELLANEOUS ,diversity - Abstract
International audience
- Published
- 2016
10. The impact of whole genome sequence data to prioritise animals for genetic diversity conservation
- Author
-
Eynard, Sonia, Windig, Jack J., Hiemstra, Sipke-Joost, Calus, Mario P. L., Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Animal Breeding and Genomics, Wageningen University and Research [Wageningen] (WUR), Center for Genetic Resources, Centre for Genetic Resources, and AgroParisTech-Institut National de la Recherche Agronomique (INRA)
- Subjects
[SDV.GEN]Life Sciences [q-bio]/Genetics ,[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics ,[SDV]Life Sciences [q-bio] ,conservation ,genetic ,genome ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2015
11. The Use of Whole Genome Sequence Data to Estimate Genetic Relationships Including Rare Alleles Information
- Author
-
Leroy, Grégoire, Eynard, Sonia, Windig , JJ, Verrier, Etienne, Hiemstra, S.J., van Binsbergen, Rianne, Calus, MPL, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Animal Breeding and Genomics, Wageningen University and Research [Wageningen] (WUR), Center for Genetic Resources, Centre for Genetic Resources, Wageningen University and Research Centre (WUR), and Wageningen University and Research Centre [Wageningen] (WUR)
- Subjects
[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] ,[SDV]Life Sciences [q-bio] ,WIAS ,Life Science ,Fokkerij en Genomica ,Animal Breeding and Genomics ,Fokkerij & Genomica ,genetic ,genome ,ComputingMilieux_MISCELLANEOUS ,Animal Breeding & Genomics - Abstract
Whole genome sequencing technologies are rapidly developing. In some ways, the speed of this development has outstripped our capacity to use this type of data in selection strategies, especially in livestock diversity conservation. In this study, relationship matrices were computed for 118 Holstein bulls, key ancestors of the current population, from three different types of data: pedigree records, 50K SNP chips and whole genome sequences, considering three different scenarios (with, without or only using rare alleles). Estimates from different data were highly correlated. Rare alleles had a significant impact on relationship estimates, mostly when whole genome sequence data were used. Hence sequence data, and information from rare alleles, are potentially of use for improving relationship computation. Estimation of relationships made with this type of data may result in different individual optimal contributions and influence selection strategies and conservation decisions of livestock species
- Published
- 2014
12. Avian Genomics in Animal Breeding: Do we still need model organisms?
- Author
-
Vignal, Alain, Génétique Physiologie et Systèmes d'Elevage (GenPhySE ), Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and eynard, sonia
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,avian genomics ,animal breeding - Abstract
International audience; Chicken is by far the most widely used bird in animal breeding and is also a model organism that has long been used for scientific observations, typically in embryology. This position at the crossroads of the breeding industry and of basic research is part of the reasons for which chicken was amongst the first vertebrates sequenced at the dawn of the era of large genomes analyses, with a draft genome published only three years after the human one. The other reasons were that it was the only representative of the bird lineage at the time having available genomics resources such as genetic maps or large-insert DNA libraries. Just like a lot of the understanding of bird biology stemmed from using chicken as model, new insights into the specificities of bird genomes, such as the karyotype organization into macrochromosomes and microchromosomes, could be investigated in great detail.Since then, largely due to the advent of the second-generation parallel sequencing and third-generation long-read methods, more bird species were sequenced and at the time of writing, 163 assemblies are available with various levels of quality in the NCBI genome database. These include other birds bred as agricultural species, such as turkey, duck, quail or guinea fowl.In animal breeding, the genomic information is mainly used for QTL detection, marker-assisted or genomic selection and for a deeper understanding of biological mechanisms. Also, much had been done in poultry, to take advantage of the large collection of phenotypic variants present either in commercial or in fancy breeds. For instance, a number of genes causing coloration and ornamental variation were identified first in chicken, thanks for all the genomics tools available, and later on in other species, usually and in the absence of a reference genome, by directly testing the candidate genes found in chicken.With the advent of high quality and low-cost sequencing, the number of available genomes will expand rapidly and their quality will increase. However, does this mean model organisms will not be needed anymore?
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.