1. Two-body threshold spectral analysis, the critical case
- Author
-
Xue Ping Wang, Erik Skibsted, Institut for Matematiske Fag , Aarhus Universitet, Aarhus University [Aarhus], Equations aux dérivées partielles, Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Angular momentum ,critical potential ,01 natural sciences ,Mathematics - Spectral Theory ,phase shift ,Operator (computer programming) ,Mathematics - Analysis of PDEs ,35P25, 47A40, 81U10 ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Asymptotic formula ,0101 mathematics ,Spectral Theory (math.SP) ,Eigenvalues and eigenvectors ,Mathematics ,Mathematical physics ,Resolvent ,Schrödinger operator ,Scattering ,010102 general mathematics ,Mathematical analysis ,Zero (complex analysis) ,Mathematics::Spectral Theory ,Threshold spectral analysis ,Bounded function ,010307 mathematical physics ,Analysis ,Analysis of PDEs (math.AP) ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
We study in dimension d ⩾ 2 low-energy spectral and scattering asymptotics for two-body d-dimensional Schrodinger operators with a radially symmetric potential falling off like − γ r − 2 , γ > 0 . We consider angular momentum sectors, labelled by l = 0 , 1 , … , for which γ > ( l + d / 2 − 1 ) 2 . In each such sector the reduced Schrodinger operator has infinitely many negative eigenvalues accumulating at zero. We show that the resolvent has a non-trivial oscillatory behaviour as the spectral parameter approaches zero in cones bounded away from the negative half-axis, and we derive an asymptotic formula for the phase shift.
- Published
- 2011