1. Multilinear Polynomial Systems: Root Isolation and Bit Complexity
- Author
-
Ioannis Z. Emiris, Angelos Mantzaflaris, Elias P. Tsigaridas, AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA), ATHENA - Research and Innovation Center in Information, Communication and Knowledge Technologies, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Polynomial Systems (PolSys), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE40-0009,GALOP,Jeux à travers la lentille de algèbre et géométrie de l'optimisation(2017)
- Subjects
Multilinear map ,Polynomial ,Bit complexity ,010103 numerical & computational mathematics ,01 natural sciences ,Overdetermined system ,Combinatorics ,Matrix (mathematics) ,Rational univariate representation ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,Computer Science::Symbolic Computation ,Primitive element ,0101 mathematics ,Cayley-Koszul complex ,Variable (mathematics) ,Mathematics ,[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] ,Algebra and Number Theory ,010102 general mathematics ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Resultant matrix ,Computational Mathematics ,DMM separation bound ,Multiplication ,Complex number ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
We exploit structure in polynomial system solving by considering polynomials that are linear in subsets of the variables. We focus on algorithms and their Boolean complexity for computing isolating hyperboxes for all the isolated complex roots of well-constrained, unmixed systems of multilinear polynomials based on resultant methods. We enumerate all expressions of the multihomogeneous (or multigraded) resultant of such systems as a determinant of Sylvester-like matrices, aka generalized Sylvester matrices. We construct these matrices by means of Weyman homological complexes, which generalize the Cayley-Koszul complex. The computation of the determinant of the resultant matrix is the bottleneck for the overall complexity. We exploit the quasi-Toeplitz structure to reduce the problem to efficient matrix-vector multiplication, which corresponds to multivariate polynomial multiplication, by extending the seminal work on Macaulay matrices of Canny, Kaltofen, and Yagati Canny et al. (1989) to the multihomogeneous case. We compute a rational univariate representation of the roots, based on the primitive element method. In the case of 0-dimensional systems we present a Monte Carlo algorithm with probability of success 1 − 1 / 2 ϱ , for a given ϱ ≥ 1 , and bit complexity O ˜ B ( n 2 D 4 + ϵ ( n N + 1 + τ ) + n D 2 + ϵ ϱ ( D + ϱ ) ) for any ϵ > 0 , where n is the number of variables, D equals the multilinear Bezout bound, N is the number of variable subsets, and τ is the maximum coefficient bitsize. We present an algorithmic variant to compute the isolated roots of overdetermined and positive-dimensional systems. Thus our algorithms and complexity analysis apply in general with no assumptions on the input.
- Published
- 2021
- Full Text
- View/download PDF