1. Momentum sharing in imbalanced Fermi systems
- Author
-
W. Kim, G. Niculescu, S. Chandavar, J. T. Goetz, A. Kim, P. Lenisa, C. E. Hyde, I. Niculescu, N. A. Baltzell, H. Hakobyan, Friedrich Klein, J. Ball, D. Doughty, C. Hanretty, D. Rimal, Shalev Gilad, F. Sabatié, A. El Alaoui, R. Dupre, M. Battaglieri, S. Fegan, Chaden Djalali, S. May-Tal Beck, P. Stoler, Nicholas Zachariou, Michael Dugger, M. Ripani, John Arrington, T. Cao, William Brooks, A. Deur, J. W. Price, M. Lowry, I. J. D. MacGregor, G. Rosner, H. Y. Lu, O. Pogorelko, Diane Schott, R. Shneor, I. Bedlinskiy, K. Park, S. Koirala, Y. Ilieva, Latifa Elouadrhiri, E. L. Isupov, M. Ungaro, D. G. Ireland, R. A. Schumacher, D. Protopopescu, N. Markov, H. Jiang, Volker D. Burkert, Y. Ghandilyan, A. S. Biselli, R. De Vita, L. L. Pappalardo, I. Zonta, G. V. Fedotov, X. Wei, S. Strauch, Douglas Higinbotham, L. Colaneri, M. Osipenko, A. Beck, K. Livingston, L. El Fassi, Lorenzo Zana, T. A. Forest, S. Stepanyan, Misak Sargsian, Hovanes Egiyan, C. Munoz Camacho, S. Pisano, K. P. Adhikari, M. Taiuti, M. Braverman, R. Paremuzyan, K. A. Griffioen, M. Mayer, Larry Weinstein, William Bertozzi, D. Keller, T. Mineeva, D. S. Carman, Andrea Celentano, Barry Ritchie, Gerard Gilfoyle, K. Joo, Eli Piasetzky, S. E. Kuhn, D. Sokhan, M. Hattawy, P. L. Cole, M. Khandaker, P. Rossi, R. W. Gothe, F. X. Girod, B. Garillon, V. Crede, B. McKinnon, S. A. Wood, Z. W. Zhao, N. Gevorgyan, P. Nadel-Turonski, M. Garçon, W. I. Levine, Victor Mokeev, E. Voutier, Y. G. Sharabian, X. Zheng, Andrew Puckett, H. S. Jo, A. V. Vlassov, S. Tkachenko, L. Guo, G. Asryan, K. Hicks, Y. Prok, W. Phelps, A. Rizzo, S. Niccolai, A. Movsisyan, S. S. Stepanyan, E. Pasyuk, V. Sytnik, Or Hen, I. Korover, P. Roy, M. Guidal, B. Mustapha, B. I. Ishkanov, G. D. Smith, M. Holtrop, S. Procureur, V. P. Kubarovsky, Annalisa D'Angelo, Michael Wood, K. Hafidi, H. Avakian, N. K. Walford, Département de Physique Nucléaire (ex SPhN) (DPHN), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), CLAS Collaboration, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear Theory ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,Settore FIS/04 - Fisica Nucleare e Subnucleare ,Nuclear physics ,Nuclear Theory (nucl-th) ,symbols.namesake ,Pauli exclusion principle ,Semi-empirical mass formula ,Nuclear force ,Nuclear drip line ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Condensed Matter::Quantum Gases ,Physics ,Multidisciplinary ,Fermi energy ,Quantum Gases (cond-mat.quant-gas) ,Atomic nucleus ,Nuclear magnetic moment ,symbols ,Condensed Matter - Quantum Gases ,Fermi gas - Abstract
The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems., Comment: Published in Science. 10 pages, 3 figures
- Published
- 2014