1. G-computation, propensity score-based methods, and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study
- Author
-
Florence Gillaizeau, Clemence Leyrat, Chloé Rousseau, Laetitia Barbin, Florent Le Borgne, Yohann Foucher, Arthur Chatton, David Laplaud, Bruno Giraudeau, Maxime Léger, Jonchère, Laurent, Recherche en Informatique et en Statistique pour l'Analyse de Cohortes - - RISCA2016 - ANR-16-LCV1-0003 - LABCOM - VALID, MethodS in Patients-centered outcomes and HEalth ResEarch (SPHERE), Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes (UN)-Université de Nantes (UN), London School of Hygiene and Tropical Medicine (LSHTM), Centre d'Investigation Clinique [Rennes] (CIC), Université de Rennes (UR)-Hôpital Pontchaillou-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Investigation Clinique de Nantes (CIC Nantes), Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre hospitalier universitaire de Nantes (CHU Nantes), Centre de Recherche en Transplantation et Immunologie (U1064 Inserm - CRTI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM), ANR-16-LCV1-0003-01, Agence Nationale de la Recherche, ANR-16-LCV1-0003,RISCA,Recherche en Informatique et en Statistique pour l'Analyse de Cohortes(2016), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Hôpital Pontchaillou-Institut National de la Santé et de la Recherche Médicale (INSERM), and Université de Tours-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques
- Subjects
Matching (statistics) ,Computer science ,Epidemiology ,Science ,Context (language use) ,01 natural sciences ,Article ,010104 statistics & probability ,03 medical and health sciences ,0302 clinical medicine ,Statistics ,Covariate ,030212 general & internal medicine ,0101 mathematics ,Multidisciplinary ,[STAT.ME] Statistics [stat]/Methodology [stat.ME] ,Confounding ,Variance (accounting) ,Outcome (probability) ,Risk factors ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,Causal inference ,Propensity score matching ,Medicine ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] - Abstract
Controlling for confounding bias is crucial in causal inference. Distinct methods are currently employed to mitigate the effects of confounding bias. Each requires the introduction of a set of covariates, which remains difficult to choose, especially regarding the different methods. We conduct a simulation study to compare the relative performance results obtained by using four different sets of covariates (those causing the outcome, those causing the treatment allocation, those causing both the outcome and the treatment allocation, and all the covariates) and four methods: g-computation, inverse probability of treatment weighting, full matching and targeted maximum likelihood estimator. Our simulations are in the context of a binary treatment, a binary outcome and baseline confounders. The simulations suggest that considering all the covariates causing the outcome led to the lowest bias and variance, particularly for g-computation. The consideration of all the covariates did not decrease the bias but significantly reduced the power. We apply these methods to two real-world examples that have clinical relevance, thereby illustrating the real-world importance of using these methods. We propose an R package RISCA to encourage the use of g-computation in causal inference.
- Published
- 2020
- Full Text
- View/download PDF