1. Concept Embedding Models
- Author
-
Zarlenga, Mateo, Barbiero, Pietro, Ciravegna, Gabriele, Marra, Giuseppe, Giannini, Francesco, Diligenti, Michelangelo, Precioso, Frederic, Melacci, Stefano, Weller, Adrian, Lio, Pietro, Jamnik, Mateja, University of Cambridge [UK] (CAM), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Modèles et algorithmes pour l’intelligence artificielle (MAASAI), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (LJAD), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Côte d'Azur (UCA), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Università degli Studi di Siena = University of Siena (UNISI), PB acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 848077. GC acknowledges support from the EU Horizon 2020 project AI4Media, under contract no. 951911. AW acknowledges support from a Turing AI Fellowship under grant EP/V025279/1, The Alan Turing Institute, and the Leverhulme Trust via CFI. GM is funded by the Research Foundation-Flanders (FWO-Vlaanderen, GA No 1239422N). FG is supported by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No 952215. This work was also partially supported by HumanE-AI-Net a project funded by EU Horizon 2020 research and innovation programme under GA 952026., European Project: H2020-951911,H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT),AI4Media(2020), European Project: 952215,TAILOR(2020), and European Project: 952026,EC:H2020 | RIA,HumanE AI Network(2020)
- Subjects
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; Deploying AI-powered systems requires trustworthy models supporting effective human interactions, going beyond raw prediction accuracy. Concept bottleneck models promote trustworthiness by conditioning classification tasks on an intermediate level of human-like concepts. This enables human interventions which can correct mispredicted concepts to improve the model's performance. However, existing concept bottleneck models are unable to find optimal compromises between high task accuracy, robust concept-based explanations, and effective interventions on concepts-particularly in real-world conditions where complete and accurate concept supervisions are scarce. To address this, we propose Concept Embedding Models, a novel family of concept bottleneck models which goes beyond the current accuracy-vs-interpretability trade-off by learning interpretable highdimensional concept representations. Our experiments demonstrate that Concept Embedding Models (1) attain better or competitive task accuracy w.r.t. standard neural models without concepts, (2) provide concept representations capturing meaningful semantics including and beyond their ground truth labels, (3) support test-time concept interventions whose effect in test accuracy surpasses that in standard concept bottleneck models, and (4) scale to real-world conditions where complete concept supervisions are scarce.
- Published
- 2022