1. An analysis and an affordable regularization technique for the spurious force oscillations in the context of direct-forcing immersed boundary methods
- Author
-
Jonathan Dumas, B. Mathieu, M. Chandesris, D. Jamet, Yannick Gorsse, C. Josserand, Michel Belliard, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G ), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département Etude des Réacteurs (DER), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut Jean le Rond d'Alembert (DALEMBERT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Service d'Ophtalmologie (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Mathematical optimization ,Ranging ,010103 numerical & computational mathematics ,Immersed boundary method ,Solver ,01 natural sciences ,Regularization (mathematics) ,Finite element method ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,010101 applied mathematics ,Computational Mathematics ,symbols.namesake ,Computational Theory and Mathematics ,Modeling and Simulation ,Taylor series ,symbols ,Applied mathematics ,0101 mathematics ,Spurious relationship ,Boundary element method ,Mathematics - Abstract
International audience; The framework of this paper is the improvement of direct-forcing immersed boundary methods in presence of moving obstacles. In particular, motivations for the use of the Direct Forcing (DF) method can be found in the advantage of a fixed computational mesh for fluid–structure interaction problems. Unfortunately, the direct forcing approach suffers a serious drawback in case of moving obstacles: the well known spurious force oscillations (SFOs). In this paper, we strengthen previous analyses of the origin of the SFO through a rigorous numerical evaluation based on Taylor expansions. We propose a remedy through an easy-to-implement regularization process (regularized DF). Formally, this regularization is related to the blending of the Navier–Stokes solver with the interpolation, but no modification of the numerical scheme is needed. This approach significantly cuts off the SFOs without increasing the computational cost. The accuracy and the space convergence order of the standard DF method are conserved. This is illustrated on numerical and physical validation test cases ranging from the Taylor–Couette problem to a cylinder with an imposed sinusoidal motion subjected to a cross-flow.
- Published
- 2016