7 results on '"Andre, Yves"'
Search Results
2. Singularities in mixed characteristic. The perfectoid approoach
- Author
-
ANDRE, YVES, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), and Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics::Commutative Algebra ,[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
International audience; The homological conjectures, which date back to Peskine, Szpiro and Hochster in the late 60s, make fundamental predictions about syzygies and intersection problems in commutative algebra. They were settled long ago in the presence of a base field and led to tight closure theory, a powerful tool to investigate singularities in characteristic p. Recently, perfectoid techniques coming from p-adic Hodge theory have allowed us to get rid of any base field; this solves the direct sum-mand conjecture and establishes the existence and weak functoriality of big Cohen-Macaulay algebras, which solve in turn the homological conjectures in general. This also opens the way to the study of singularities in mixed characteristic. We sketch a broad outline of this story, taking lastly a glimpse at ongoing work by L. Ma and K. Schwede, which shows how such a study could build a bridge between singularity theory in char. p and in char. 0.
- Published
- 2019
3. Le dialogue MaMuPhi et la question contemporaine des oeuvres et de leur recouvrement. Un point de vue mathématicien
- Author
-
ANDRE, YVES, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), and Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
International audience; Le dialogue MaMuPhi et la question contemporaine des oeuvres et de leur recouvrement. Un point de vue mathématicien. Yves André, MaMuPhi, Ircam 8 juin 2019 Introduction. Quand le séminaire MaMuPhi fêtait ses dix ans, il avait publié un recueil intitulé "à la lumière des mathématiques età l'ombre de la philosophie". Pour ses vingt ans, c'est plutôt du côté de la philosophie qu'il projette la lumière, et ma contribution ici ne sera qu'une ombre portée. J'aimerais commencer par rendre hommage au dialogue qui s'est engagé dans ce séminaire. Distinguons grossièrement deux espèces de dialogues: les dialogues de sourds (simple confrontation d'opinions, se soutenant souvent de la croyance que la vérité se situerait quelque part vers leur moyenne arithmétique), et les dialogues plus authentiques (où, comme dans ceux de Platon, il est question de parier sur une raison commune pour chercher des vérités)-séparés par le marais des débats oiseux ou insignifiants. Dans un séminaire où la musique, et donc l'écoute, tient une place centrale, ce serait un comble qu'on ait affaireà un dialogue de sourds. Pourtant, comme nous l'a souvent rappelé celui qui a fondé et qui incarne ce séminaire, François Nicolas, cela ne va nullement de soi, comme le montre l'exemple historique du dialogue de sourds auquel a abouti l'échange entre Euler et Rameau. Je voudrais donc commencer par témoigner que MaMuPhi aété le lieu de dialogues authentiques, et plus que seulement stimulants; sig-naler quelques ouvrages qui se sont construits autour du séminaire, comme la "Vérité du beau en musique" que G. Mazzola aécrit pour expliquer aux musiciens les enjeux de sa théorie mathématique de la musique, et l'opus magnum de F. Nicolas, "Le monde-musique" dont bien des chapitres, issus de ses exposés gardent la trace des discussions qu'ils ont nourries. J'ai plaisirà rappeler aussi cette demande impromptue que F. Nicolas m'a adressée naguère, comme une urgence, d'expliquer le facteur de von Neumann hyperfini de type II1! Ce petit evènement de probabilité nulle qui m'a conduità présenterà l'IRCAM un cycle de "leçons de mathématiques contemporaines" destinéesà faire toucher du doigtà des non-mathématiciens ce que la pensée mathématique contemporaine aà dire sur des sujets comme l'espace, le temps, la singularité, la dualité etc, sujets qui appartiennent tout aussi bienà la musique,à la philosophie,à l'architecture etc. MaMuPhi est un lieu qui encourage, chacun dans son domaine,à développer et expliciter son "intellectualité", pour reprendre le terme
- Published
- 2019
4. A NOTE ON 1-MOTIVES
- Author
-
Yves André, Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), and ANDRE, YVES
- Subjects
Pure mathematics ,Mathematics::Number Theory ,General Mathematics ,[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,19E, 14F, 14D, 14C ,Galois group ,Tannakian category ,01 natural sciences ,[MATH.MATH-AC] Mathematics [math]/Commutative Algebra [math.AC] ,Mathematics - Algebraic Geometry ,Mathematics::Algebraic Geometry ,Mathematics::K-Theory and Homology ,Mathematics::Category Theory ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Algebraically closed field ,Algebraic Geometry (math.AG) ,Mathematics ,Group (mathematics) ,010102 general mathematics ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,010307 mathematical physics ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Realization (systems) ,[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] - Abstract
We prove that for $1$-motives defined over an algebraically closed subfield of $\C$, viewed as Nori motives, the motivic Galois group is the Mumford-Tate group. In particular, the Hodge realization of the tannakian category of (Nori) motives generated by $1$-motives is fully faithful., slightly expanded version. To appear in Intern. Res. Math. Notices
- Published
- 2019
5. WEAK FUNCTORIALITY OF COHEN-MACAULAY ALGEBRAS
- Author
-
Yves André, Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), and ANDRE, YVES
- Subjects
Pure mathematics ,General Mathematics ,Existential quantification ,[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,Field (mathematics) ,Commutative Algebra (math.AC) ,01 natural sciences ,[MATH.MATH-AC] Mathematics [math]/Commutative Algebra [math.AC] ,0103 physical sciences ,13D22, 13H05, 14G20 ,FOS: Mathematics ,Perfectoid ,0101 mathematics ,Argument (linguistics) ,Commutative algebra ,Mathematics ,Mathematics::Commutative Algebra ,Skein ,Applied Mathematics ,010102 general mathematics ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,Mathematics - Commutative Algebra ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,Homomorphism ,010307 mathematical physics ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] - Abstract
We prove the weak functoriality of (big) Cohen-Macaulay algebras, which controls the whole skein of "homological conjectures" in commutative algebra [H1][HH2]. Namely, for any local homomorphism $ R\to R'$ of complete local domains, there exists a compatible homomorphism between some Cohen-Macaulay $R$-algebra and some Cohen-Macaulay $R'$-algebra. When $R$ contains a field, this is already known [[3.9]{HH2}]. When $R$ is of mixed characteristic, our strategy of proof is reminiscent of G. Dietz's refined treatment [D] of weak functoriality of Cohen-Macaulay algebras in characteristic $p$; in fact, developing a "tilting argument" due to K. Shimomoto, we combine the perfectoid techniques of [A1][A2] with Dietz's result., Comment: A short erratum to the author's "le lemme d'Abhyankar perfecto\"ide" is added
- Published
- 2019
6. ON THE CANONICAL, FPQC, AND FINITE TOPOLOGIES ON AFFINE SCHEMES. THE STATE OF THE ART
- Author
-
Yves André, Luisa Fiorot, and ANDRE, YVES
- Subjects
Pure mathematics ,Canonical topology, effective descent, pure ring map, fpqc topology, finite covering, regularity, Frobenius algebra, rational singularity, splinter, cluster algebra ,regularity ,Canonical topology ,Commutative Algebra (math.AC) ,Network topology ,Theoretical Computer Science ,splinter ,[MATH.MATH-AC] Mathematics [math]/Commutative Algebra [math.AC] ,Mathematics - Algebraic Geometry ,Mathematics (miscellaneous) ,Morphism ,fpqc topology ,FOS: Mathematics ,Category Theory (math.CT) ,effective descent ,Commutative algebra ,Algebraic Geometry (math.AG) ,finite covering ,Topology (chemistry) ,Descent (mathematics) ,Mathematics ,Ring (mathematics) ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,Mathematics - Category Theory ,Mathematics - Commutative Algebra ,pure ring map ,Injective function ,Frobenius algebra ,rational singularity ,Affine transformation ,cluster algebra ,[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] - Abstract
This is a systematic study of the behaviour of finite coverings of (affine) schemes with regard to two Grothendieck topologies: the canonical topology and the fpqc topology. The history of the problem takes roots in the foundations of Grothendieck topologies, passes through main strides in Commutative Algebra and leads to new Mathematics up to perfectoids and prisms. We first review the canonical topology of affine schemes and show, keeping with Olivier's lost work, that it coincides with the effective descent topology; covering maps are given by universally injective ring maps, which we discuss in detail. We then give a "catalogue raisonn\'e" of examples of finite coverings which separate the canonical, fpqc and fppf topologies. The key result is that finite coverings of regular schemes are coverings for the canonical topology, and even for the fpqc topology (but not necessarily for the fppf topology). We discuss a "weakly functorial" aspect of this result. "Splinters" are those affine Noetherian schemes for which every finite covering is a covering for the canonical topology. We also investigate their mysterious fpqc analogs, and prove that in prime characteristic, they are all regular. This leads us to the problem of descent of regularity by (non-necessarily flat) morphisms $f$ which are coverings for the fpqc topology, which is settled thanks to a recent theorem of Bhatt-Iyengar-Ma., Comment: Final version, accepted in Ann. Sc. Norm. Super. Pisa Cl. Sci
- Published
- 2019
7. LA CONJECTURE DU FACTEUR DIRECT
- Author
-
Yves André and ANDRE, YVES
- Subjects
big Cohen-Macaulay algebra ,General Mathematics ,perfectoid algebra ,010102 general mathematics ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,01 natural sciences ,Combinatorics ,[MATH.MATH-AC] Mathematics [math]/Commutative Algebra [math.AC] ,Mathematics - Algebraic Geometry ,Number theory ,0103 physical sciences ,13D22, 13H05, 14G20 ,purity ,FOS: Mathematics ,Direct summand conjecture ,010307 mathematical physics ,0101 mathematics ,Algebra over a field ,Algebraic Geometry (math.AG) ,Mathematics ,[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] - Abstract
M. Hochster conjectured that any finite extension of a regular commutative ring splits as a module. Building on his reduction to the case of an unramified complete regular local ring R of mixed characteristic, we propose a proof in the framework of P. Scholze's perfectoid theory. The main ingredients are the perfectoid " Abhyankar lemma" and an analysis of Kummer extensions of R by a thickening technique., RÉSUMÉ. M. Hochster a conjecturé que pour toute extension finie S d'un anneau com-mutatif régulier R, la suite exacte de R-modules 0 → R → S → S/R → 0 est scindée. En nous appuyant sur sa réduction au cas d'un anneau local régulier R complet non rami-fié d'inégale caractéristique, nous proposons une démonstration de cette conjecture dans le contexte de la théorie perfectoïde de P. Scholze. Les deux ingrédients-clé sont le « lemme d'Abhyankar » perfectoïde et l'analyse des extensions kummériennes de R par une technique d'épaississement sur des voisinages tubulaires.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.