1. Ionising radiation and area-wide management of insect pests to promote sustainable agriculture. A review
- Author
-
Alan S. Robinson and Marc J. B. Vreysen
- Subjects
0106 biological sciences ,Integrated pest management ,[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,Environmental Engineering ,Population ,Biological pest control ,Biology ,010603 evolutionary biology ,01 natural sciences ,Sterile insect technique ,education ,ComputingMilieux_MISCELLANEOUS ,2. Zero hunger ,[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,education.field_of_study ,business.industry ,fungi ,Pest control ,Biotechnology ,010602 entomology ,13. Climate action ,Agriculture ,PEST analysis ,business ,Agronomy and Crop Science ,Waste disposal - Abstract
Despite the liberal use of broad-spectrum insecticides to keep many insect pests of agricultural and veterinary importance at bay, food losses, both pre- and post-harvest, due to these insect pests contribute significantly to the high prevalence of undernourishment in the world. New, innovative pest control tactics and strategies are therefore needed that are both effective and not detrimental to the environment. As part of the arsenal of environmentally-friendly control tactics, the sterile insect technique (SIT) has proven to be a very effective tool against selected insect pests when used as part of an area-wide integrated pest management (AW-IPM) approach. Likewise, the use of natural enemies for augmentative or inundative biological control is now a major component of pest control in many parts of the world. Both control tactics are complementary and even synergistic under certain circumstances, but their combined use has so far not been applied on an operational scale. Ionising radiation can be readily employed to effectively and safely induce sexual sterility in insects. Although the sterile insect technique has often been associated with an eradication strategy, major advances in rearing efficiency, and improved handling and release methods, have made the use of sterile insects economically feasible for insect pest suppression, prevention or containment. Recently, more emphasis has been placed on the quality of the sterile insect once released in the field rather than mainly assessing quality in the rearing facility. This combined with other innovations such as the development of genetic sexing strains, better understanding the impact of radiation on radio-resistant species such as Lepidoptera and the development of the F1 sterility concept, advances in monitoring the induced sterility, etc. have significantly increased the efficiency of the sterile insect technique for several insect species. The action of sterile insects is inversely dependent on the density of the target population, and sterile insects have the intrinsic capacity to actively search for and mate with the last individuals of a pest population. These two characteristics make them ideal to deal with outbreaks of invasive insect pests. The use of sterile insects presents no threat to the environment, but aspects such as diet and waste disposal in large rearing facilities or bio-security in cases where the rearing facility is located in an area that is already free of the pest require the necessary attention. Ionising radiation can also be applied to greatly improve the efficiency of mass-rearing, handling and shipment of insect parasitoids and predators. Area-wide integrated pest management programmes that use sterile insects or natural enemies are complex and management-intensive, and require a management structure that is exclusively dedicated to the programme. Past and current examples have shown the enormous benefit-cost ratios that these programmes can generate and their importance for enhanced agriculture is increasing in significance.
- Published
- 2011
- Full Text
- View/download PDF