1. Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning
- Author
-
Philippe Faure, Jean-Christophe Olivo-Marin, Fabrice de Chaumont, Nicolas Torquet, Albane Imbert, Stephane Dallongeville, Anne-Marie Le Sourd, Thomas Bourgeron, Elodie Ey, Thierry Legou, Thibault Lagache, Analyse d'images biologiques - Biological Image Analysis (BIA), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Génétique humaine et fonctions cognitives - Human Genetics and Cognitive Functions (GHFC (UMR_3571 / U-Pasteur_1)), Institut Pasteur [Paris]-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Neurosciences Paris Seine (NPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche et Innovation Technologique (CITECH), Institut Pasteur [Paris], Laboratoire Parole et Langage (LPL), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), This work was partially funded by the Institut Pasteur, the Bettencourt-Schueller Foundation, the Cognacq–Jay Foundation, the Conny–Maeva Foundation, the ERANET–NEURON SYNPATHY program, the Agence Nationale de la Recherche through grant number ANR-10-LABX-62-IBEID, France-BioImaging infrastructure through grant number ANR-10-INBS-04 and the INCEPTION program through grant number ANR-16-CONV-0005, the Centre National de la Recherche Scientifique, the University Paris Diderot, the BioPsy Labex, the Institut National du Cancer through grant number TABAC-16–022, the Foundation for Medical Research (Equipe DEQ20130326488), the Innovative Medicines Initiative Joint Undertaking through grant agreement number 115300, resources of which are composed of financial contributions from the European Union’s Seventh Framework Program (FP7/2007–2013) and EFPIA companies in kind contribution., The authors thank Y. Archambeau and P. Ollivon at the workshop of the Institut Pasteur for building the first 12 setups and advising on hardware, W. Meiniel for the mathematical proof for decisions of head/tail probability, Microsoft France for their technical support, P. Spinicelli for optical engineering and reading of the paper, R. Marée for machine learning support, B. König for advice and reading of biological experiments, J. N. Crawley for reading and providing comments on the manuscript, A. Barmpoutis for providing us with the early Kinect 2 driver and support, N. Chenouard for driving the use of the machine learning solution, P. Dugast for drawing the mice in the different behavioural events, A. Engelberg for checking the English, S. Wagner and R. Accardi for RFID advice, M. Marim for website development, and X. Montagutelli and M. Bérard for animal facility support., Analyse d'images biologiques - BioImage Analysis (AIQ), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut Pasteur [Paris], Neuroscience Paris Seine (NPS), Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP), ANR-16-CONV-0005,INCEPTION,Institut Convergences pour l'étude de l'Emergence des Pathologies au Travers des Individus et des populatiONs(2016), Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], and Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Male ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,Biomedical Engineering ,Video Recording ,Medicine (miscellaneous) ,Bioengineering ,Nerve Tissue Proteins ,Mouse tracking ,Biology ,Machine learning ,computer.software_genre ,Machine Learning ,03 medical and health sciences ,Mice ,0302 clinical medicine ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Animals ,Autistic Disorder ,Real time analysis ,Social Behavior ,Mice, Knockout ,Behavior, Animal ,business.industry ,Microfilament Proteins ,Computer Science Applications ,Disease Models, Animal ,030104 developmental biology ,Phenotype ,Mutation ,Identification (biology) ,Female ,Artificial intelligence ,business ,computer ,030217 neurology & neurosurgery ,Biotechnology ,Behavioral Research - Abstract
Preclinical studies of psychiatric disorders use animal models to investigate the impact of environmental factors or genetic mutations on complex traits such as decision-making and social interactions. Here, we introduce a method for the real-time analysis of the behaviour of mice housed in groups of up to four over several days and in enriched environments. The method combines computer vision through a depth-sensing infrared camera, machine learning for animal and posture identification, and radio-frequency identification to monitor the quality of mouse tracking. It tracks multiple mice accurately, extracts a list of behavioural traits of both individuals and the groups of mice, and provides a phenotypic profile for each animal. We used the method to study the impact of Shank2 and Shank3 gene mutations—mutations that are associated with autism—on mouse behaviour. Characterization and integration of data from the behavioural profiles of Shank2 and Shank3 mutant female mice revealed their distinctive activity levels and involvement in complex social interactions. A method that combines a depth-sensing camera and machine learning can track the movements of up to four mice in real time and for several days, extracting both individual and group behavioural traits.
- Published
- 2019