1. Developing prediction models for symptom severity around the time of discharge from a tertiary-care program for treatment-resistant psychosis.
- Author
-
Lee LHN, Procyshyn RM, White RF, Gicas KM, Honer WG, and Barr AM
- Abstract
Antipsychotics are the only therapeutic class indicated in the symptomatic management of psychotic disorders. However, individuals diagnosed with schizophrenia or schizoaffective disorder may not always benefit from these first-line agents. This refractoriness to conventional treatment can be difficult to address in most clinical settings. Therefore, a referral to a tertiary-care program that is better able to deliver specialized care in excess of the needs of most individuals may be necessary. The average outcome following a period of treatment at these programs tends to be one of improvement. Nonetheless, accurate prognostication of individual-level responses may be useful in identifying those who are unlikely to improve despite receiving specialized care. Thus, the main objective of this study was to predict symptom severity around the time of discharge from the Refractory Psychosis Program in British Columbia, Canada using only clinicodemographic information and prescription drug data available at the time of admission. To this end, a different boosted beta regression model was trained to predict the total score on each of the five factors of the Positive and Negative Syndrome Scale (PANSS) using a data set composed of 320 hospital admissions. Internal validation of these prediction models was then accomplished by nested cross-validation. Insofar as it is possible to make comparisons of model performance across different outcomes, the correlation between predictions and observations tended to be higher for the negative and disorganized factors than the positive, excited, and depressed factors on internal validation. Past scores had the greatest effect on the prediction of future scores across all 5 factors. The results of this study serve as a proof of concept for the prediction of symptom severity using this specific approach., Competing Interests: RP reports personal fees from Janssen, Lundbeck and Otsuka. WH reports personal fees from Canadian Agency for Drugs and Technology in Health, AlphaSights, Guidepoint, Translational Life Sciences, Otsuka, Lundbeck, and Newron; grants from Canadian Institutes of Health Research, BC Mental Health and Addictions Services; and has been a consultant (non-paid) for In Silico. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Lee, Procyshyn, White, Gicas, Honer and Barr.)
- Published
- 2023
- Full Text
- View/download PDF