1. Hyperoxia/Hypoxia Exposure Primes a Sustained Pro-Inflammatory Profile of Preterm Infant Macrophages Upon LPS Stimulation.
- Author
-
Twisselmann N, Pagel J, Künstner A, Weckmann M, Hartz A, Glaser K, Hilgendorff A, Göpel W, Busch H, Herting E, Weinberg JB, and Härtel C
- Subjects
- Adult, Bronchopulmonary Dysplasia etiology, Cytokines biosynthesis, Female, Gene Expression Profiling, Gestational Age, Humans, Infant, Newborn, Macrophages immunology, Male, Toll-Like Receptor 4 physiology, Infant, Premature immunology, Inflammation etiology, Lipopolysaccharides pharmacology, Macrophages drug effects, Oxygen pharmacology
- Abstract
Preterm infants are highly susceptible to sustained lung inflammation, which may be triggered by exposure to multiple environmental cues such as supplemental oxygen (O
2 ) and infections. We hypothesized that dysregulated macrophage (MФ) activation is a key feature leading to inflammation-mediated development of bronchopulmonary dysplasia (BPD) in preterm infants. Therefore, we aimed to determine age-dependent differences in immune responses of monocyte-derived MФ comparing cord blood samples derived from preterm (n=14) and term (n=19) infants as well as peripheral blood samples from healthy adults (n=17) after lipopolysaccharide (LPS) exposure. Compared to term and adult MФ, LPS-stimulated preterm MФ showed an enhanced and sustained pro-inflammatory immune response determined by transcriptome analysis, cytokine release inducing a RORC upregulation due to T cell polarization of neonatal T cells, and TLR4 surface expression. In addition, a double-hit model was developed to study pulmonary relevant exposure factors by priming MФ with hyperoxia (O2 = 65%) or hypoxia (O2 = 3%) followed by lipopolysaccharide (LPS, 100ng/ml). When primed by 65% O2 , subsequent LPS stimulation in preterm MФ led to an exaggerated pro-inflammatory response (e.g. increased HLA-DR expression and cytokine release) compared to LPS stimulation alone. Both, exposure to 65% or 3% O2 together with subsequent LPS stimulation, resulted in an exaggerated pro-inflammatory response of preterm MФ determined by transcriptome analysis. Downregulation of two major transcriptional factors, early growth response gene (Egr)-2 and growth factor independence 1 (Gfi1), were identified to play a role in the exaggerated pro-inflammatory response of preterm MФ to LPS insult after priming with 65% or 3% O2 . Preterm MФ responses to LPS and hyperoxia/hypoxia suggest their involvement in excessive inflammation due to age-dependent differences, potentially mediated by downregulation of Egr2 and Gfi1 in the developing lung., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Twisselmann, Pagel, Künstner, Weckmann, Hartz, Glaser, Hilgendorff, Göpel, Busch, Herting, Weinberg and Härtel.)- Published
- 2021
- Full Text
- View/download PDF