1. Probing Single-Cell Macrophage Polarization and Heterogeneity Using Thermo-Reversible Hydrogels in Droplet-Based Microfluidics
- Author
-
B. M. Tiemeijer, M. W. D. Sweep, J. J. F. Sleeboom, K. J. Steps, J. F. van Sprang, P. De Almeida, R. Hammink, P. H. J. Kouwer, A. I. P. M. Smits, J. Tel, Immunoengineering, Biomedical Engineering, Microsystems, Group Den Toonder, Biomedical Materials and Chemistry, Soft Tissue Biomech. & Tissue Eng., ICMS Affiliated, and ICMS Core
- Subjects
Histology ,cytokine secretion ,Systems Chemistry ,Microfluidics ,Biomedical Engineering ,Macrophage polarization ,Bioengineering ,PHENOTYPE ,Single-cell analysis ,cellular heterogeneity ,polyisocyanide ,Spectroscopy and Catalysis ,single-cell analysis ,Viability assay ,MODULATION ,PLASTICITY ,high-throughput ,Original Research ,Science & Technology ,droplet microfluidics ,Chemistry ,flow cytometry ,Bioengineering and Biotechnology ,Juxtacrine signalling ,Multidisciplinary Sciences ,Biotechnology & Applied Microbiology ,Cell culture ,inflammation ,Self-healing hydrogels ,Biophysics ,Science & Technology - Other Topics ,Cytokine secretion ,Life Sciences & Biomedicine ,TP248.13-248.65 ,Biotechnology ,RESPONSES - Abstract
Human immune cells intrinsically exist as heterogenous populations. To understand cellular heterogeneity, both cell culture and analysis should be executed with single-cell resolution to eliminate juxtacrine and paracrine interactions, as these can lead to a homogenized cell response, obscuring unique cellular behavior. Droplet microfluidics has emerged as a potent tool to culture and stimulate single cells at high throughput. However, when studying adherent cells at single-cell level, it is imperative to provide a substrate for the cells to adhere to, as suspension culture conditions can negatively affect biological function and behavior. Therefore, we combined a droplet-based microfluidic platform with a thermo-reversible polyisocyanide (PIC) hydrogel, which allowed for robust droplet formation at low temperatures, whilst ensuring catalyzer-free droplet gelation and easy cell recovery after culture for downstream analysis. With this approach, we probed the heterogeneity of highly adherent human macrophages under both pro-inflammatory M1 and anti-inflammatory M2 polarization conditions. We showed that co-encapsulation of multiple cells enhanced cell polarization compared to single cells, indicating that cellular communication is a potent driver of macrophage polarization. Additionally, we highlight that culturing single macrophages in PIC hydrogel droplets displayed higher cell viability and enhanced M2 polarization compared to single macrophages cultured in suspension. Remarkably, combining phenotypical and functional analysis on single cultured macrophages revealed a subset of cells in a persistent M1 state, which were undetectable in conventional bulk cultures. Taken together, combining droplet-based microfluidics with hydrogels is a versatile and powerful tool to study the biological function of adherent cell types at single-cell resolution with high throughput. ispartof: FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY vol:9 ispartof: location:Switzerland status: published
- Published
- 2021