4 results on '"Marozeau J"'
Search Results
2. Perception of Musical Tension in Cochlear Implant Listeners
- Author
-
Spangmose, S, Hjortkjaer, J, Marozeau, J, Spangmose, S, Hjortkjaer, J, and Marozeau, J
- Abstract
Despite the difficulties experienced by cochlear implant (CI) users in perceiving pitch and harmony, it is not uncommon to see CI users listening to music, or even playing an instrument. Listening to music is a complex process that relies not only on low-level percepts, such as pitch or timbre, but also on emotional reactions or the ability to perceive musical sequences as patterns of tension and release. CI users engaged in musical activities might experience some of these higher-level musical features. The goal of this study is to evaluate CI users' ability to perceive musical tension. Nine CI listeners (CIL) and nine normal-hearing listeners (NHL) were asked to rate musical tension on a continuous visual analog slider during music listening. The subjects listened to a 4 min recording of Mozart's Piano Sonata No. 4 (K282) performed by an experienced pianist. In addition to the original piece, four modified versions were also tested to identify which features might influence the responses to the music in the two groups. In each version, one musical feature of the piece was altered: tone pitch, intensity, rhythm, or tempo. Surprisingly, CIL and NHL rated overall musical tension in a very similar way in the original piece. However, the results from the different modifications revealed that while NHL ratings were strongly affected by music with random pitch tones (but preserved intensity and timing information), CIL ratings were not. Rating judgments of both groups were similarly affected by modifications of rhythm and tempo. Our study indicates that CI users can understand higher-level musical aspects as indexed by musical tension ratings. The results suggest that although most CI users have difficulties perceiving pitch, additional music cues, such as tempo and dynamics might contribute positively to their experience of music.
- Published
- 2019
3. Auditory Stream Segregation and Selective Attention for Cochlear Implant Listeners: Evidence From Behavioral Measures and Event-Related Potentials
- Author
-
Paredes-Gallardo, A, Innes-Brown, H, Madsen, SMK, Dau, T, Marozeau, J, Paredes-Gallardo, A, Innes-Brown, H, Madsen, SMK, Dau, T, and Marozeau, J
- Abstract
The role of the spatial separation between the stimulating electrodes (electrode separation) in sequential stream segregation was explored in cochlear implant (CI) listeners using a deviant detection task. Twelve CI listeners were instructed to attend to a series of target sounds in the presence of interleaved distractor sounds. A deviant was randomly introduced in the target stream either at the beginning, middle or end of each trial. The listeners were asked to detect sequences that contained a deviant and to report its location within the trial. The perceptual segregation of the streams should, therefore, improve deviant detection performance. The electrode range for the distractor sounds was varied, resulting in different amounts of overlap between the target and the distractor streams. For the largest electrode separation condition, event-related potentials (ERPs) were recorded under active and passive listening conditions. The listeners were asked to perform the behavioral task for the active listening condition and encouraged to watch a muted movie for the passive listening condition. Deviant detection performance improved with increasing electrode separation between the streams, suggesting that larger electrode differences facilitate the segregation of the streams. Deviant detection performance was best for deviants happening late in the sequence, indicating that a segregated percept builds up over time. The analysis of the ERP waveforms revealed that auditory selective attention modulates the ERP responses in CI listeners. Specifically, the responses to the target stream were, overall, larger in the active relative to the passive listening condition. Conversely, the ERP responses to the distractor stream were not affected by selective attention. However, no significant correlation was observed between the behavioral performance and the amount of attentional modulation. Overall, the findings from the present study suggest that CI listeners can use electrode
- Published
- 2018
4. The acoustic and perceptual cues affecting melody segregation for listeners with a cochlear implant
- Author
-
Marozeau, J, Innes-Brown, H, Blamey, PJ, Marozeau, J, Innes-Brown, H, and Blamey, PJ
- Abstract
Our ability to listen selectively to single sound sources in complex auditory environments is termed "auditory stream segregation."This ability is affected by peripheral disorders such as hearing loss, as well as plasticity in central processing such as occurs with musical training. Brain plasticity induced by musical training can enhance the ability to segregate sound, leading to improvements in a variety of auditory abilities. The melody segregation ability of 12 cochlear-implant recipients was tested using a new method to determine the perceptual distance needed to segregate a simple 4-note melody from a background of interleaved random-pitch distractor notes. In experiment 1, participants rated the difficulty of segregating the melody from distracter notes. Four physical properties of the distracter notes were changed. In experiment 2, listeners were asked to rate the dissimilarity between melody patterns whose notes differed on the four physical properties simultaneously. Multidimensional scaling analysis transformed the dissimilarity ratings into perceptual distances. Regression between physical and perceptual cues then derived the minimal perceptual distance needed to segregate the melody. The most efficient streaming cue for CI users was loudness. For the normal hearing listeners without musical backgrounds, a greater difference on the perceptual dimension correlated to the temporal envelope is needed for stream segregation in CI users. No differences in streaming efficiency were found between the perceptual dimensions linked to the F0 and the spectral envelope. Combined with our previous results in normally-hearing musicians and non-musicians, the results show that differences in training as well as differences in peripheral auditory processing (hearing impairment and the use of a hearing device) influences the way that listeners use different acoustic cues for segregating interleaved musical streams.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.