6 results on '"Yves, Beckers"'
Search Results
2. Xylo-Oligosaccharides, Preparation and Application to Human and Animal Health: A Review
- Author
-
Yuxia Chen, Yining Xie, Kolapo M. Ajuwon, Ruqing Zhong, Tao Li, Liang Chen, Hongfu Zhang, Yves Beckers, and Nadia Everaert
- Subjects
xylo-oligosaccharides ,preparation ,application ,human health ,animal health ,Nutrition. Foods and food supply ,TX341-641 - Abstract
Xylo-oligosaccharides (XOS) are considered as functional oligosaccharides and have great prebiotic potential. XOS are the degraded products of xylan prepared via chemical, physical or enzymatic degradation. They are mainly composed of xylose units linked by β-1, 4 bonds. XOS not only exhibit some specific physicochemical properties such as excellent water solubility and high temperature resistance, but also have a variety of functional biological activities including anti-inflammation, antioxidative, antitumor, antimicrobial properties and so on. Numerous studies have revealed in the recent decades that XOS can be applied to many food and feed products and exert their nutritional benefits. XOS have also been demonstrated to reduce the occurrence of human health-related diseases, improve the growth and resistance to diseases of animals. These effects open a new perspective on XOS potential applications for human consumption and animal production. Herein, this review aims to provide a general overview of preparation methods for XOS, and will also discuss the current application of XOS to human and animal health field.
- Published
- 2021
- Full Text
- View/download PDF
3. Effects of Xylo-Oligosaccharides on Growth and Gut Microbiota as Potential Replacements for Antibiotic in Weaning Piglets
- Author
-
Yuxia Chen, Yining Xie, Ruqing Zhong, Lei Liu, Changguang Lin, Lin Xiao, Liang Chen, Hongfu Zhang, Yves Beckers, and Nadia Everaert
- Subjects
xylo-oligosaccharides ,growth performance ,gut microbiota ,antibiotics ,weaned piglets ,Microbiology ,QR1-502 - Abstract
Xylo-oligosaccharides (XOS) is a well-known kind of oligosaccharide and extensively applied as a prebiotic. The objective of this study was to investigate the effect of XOS supplementation substituting chlortetracycline (CTC) on growth, gut morphology, gut microbiota, and hindgut short chain fatty acid (SCFA) contents of weaning piglets. A total of 180 weaned piglets were randomly allocated to three treatments for 28 days, as follows: control group (basal diet, CON), basal diet with 500 mg/kg (XOS500) XOS, and positive control (basal diet with 100 mg/kg CTC). Compared with the CON group, the piglets in the XOS500 group improved body weight (BW) on days 28, average daily gain (ADG) and reduced feed: gain ratio during days 1–28 (P < 0.05). The XOS500 supplementation increased Villus height and Villus height: Crypt depth ratio in the ileum (P < 0.05). Villus Height: Crypt Depth of the ileum was also increased in the CTC treatment group (P < 0.05). Meanwhile, the XOS500 supplementation increased significantly the numbers of goblet cells in the crypt of the cecum. High-throughput 16S rRNA gene sequencing revealed distinct differences in microbial compositions between the ileum and cecum. XOS500 supplementation significantly increased the bacterial diversity. However, CTC treatment markedly reduced the microbial diversity (P < 0.05). Meanwhile, XOS500 supplementation in the diet significantly increased the abundance of Lactobacillus genus compared to the CON and CTC group in the ileum and cecum (P < 0.01), whereas the level of Clostridium_sensu_stricto_1, Escherichia-Shigella, and Terrisporobacter genus in the XOS500 group were markedly lower than the CON and CTC group (P < 0.05). In addition, dietary supplementation with XOS500 significantly increased the total short-chain fatty acids, propionate and butyrate concentrations and decreased the acetate concentration compared to the CON group in the cecum (P < 0.05). In summary, dietary supplemented with XOS500 could enhance specific beneficial microbiota abundance and decrease harmful microbiota abundance to maintain the structure of the intestinal morphology and improve growth performance of weaned piglets. Thus, XOS may potentially function as an alternative to in-feed antibiotics in weaned piglets in modern husbandry.
- Published
- 2021
- Full Text
- View/download PDF
4. Illumina Sequencing Approach to Characterize Thiamine Metabolism Related Bacteria and the Impacts of Thiamine Supplementation on Ruminal Microbiota in Dairy Cows Fed High-Grain Diets
- Author
-
Xiaohua Pan, Fuguang Xue, Xuemei Nan, Zhiwen Tang, Kun Wang, Yves Beckers, Linshu Jiang, and Benhai Xiong
- Subjects
high-grain feeding ,bacterial community ,thiamine ,dairy cows ,high-throughput sequencing ,Microbiology ,QR1-502 - Abstract
The requirements of thiamine in adult ruminants are mainly met by ruminal bacterial synthesis, and thiamine deficiencies will occur when dairy cows overfed with high grain diet. However, there is limited knowledge with regard to the ruminal thiamine synthesis bacteria, and whether thiamine deficiency is related to the altered bacterial community by high grain diet is still unclear. To explore thiamine synthesis bacteria and the response of ruminal microbiota to high grain feeding and thiamine supplementation, six rumen-cannulated Holstein cows were randomly assigned into a replicated 3 × 3 Latin square design trial. Three treatments were control diet (CON, 20% dietary starch, DM basis), high grain diet (HG, 33.2% dietary starch, DM basis) and high grain diet supplemented with 180 mg thiamine/kg DMI (HG+T). On day 21 of each period, rumen content samples were collected at 3 h postfeeding. Ruminal thiamine concentration was detected by high performance liquid chromatography. The microbiota composition was determined using Illumina MiSeq sequencing of 16S rRNA gene. Cows receiving thiamine supplementation had greater ruminal pH value, acetate and thiamine content in the rumen. Principal coordinate analysis and similarity analysis indicated that HG feeding and thiamine supplementation caused a strong shift in bacterial composition and structure in the rumen. At the genus level, compared with CON group, the relative abundances of 19 genera were significantly changed by HG feeding. Thiamine supplementation increased the abundance of cellulolytic bacteria including Bacteroides, Ruminococcus 1, Pyramidobacter, Succinivibrio, and Ruminobacter, and their increases enhanced the fiber degradation and ruminal acetate production in HG+T group. Christensenellaceae R7, Lachnospira, Succiniclasticum, and Ruminococcaceae NK4A214 exhibited a negative response to thiamine supplementation. Moreover, correlation analysis revealed that ruminal thiamine concentration was positively correlated with Bacteroides, Ruminococcus 1, Ruminobacter, Pyramidobacter, and Fibrobacter. Taken together, we concluded that Bacteroides, Ruminococcus 1, Ruminobacter, Pyramidobacter, and Fibrobacter in rumen content may be associated with thiamine synthesis or thiamine is required for their growth and metabolism. In addition, thiamine supplementation can potentially improve rumen function, as indicated by greater numbers of cellulolytic bacteria within the rumen. These findings facilitate understanding of bacterial thiamine synthesis within rumen and thiamine's function in dairy cows.
- Published
- 2017
- Full Text
- View/download PDF
5. Differences in Ureolytic Bacterial Composition between the Rumen Digesta and Rumen Wall Based on ureC Gene Classification
- Author
-
Dengpan Bu, Stuart E. Denman, Yves Beckers, Christopher S. McSweeney, Shengguo Zhao, Di Jin, Jiaqi Wang, and Nan Zheng
- Subjects
0301 basic medicine ,Microbiology (medical) ,animal structures ,Urease ,Microorganism ,030106 microbiology ,difference ,ureolytic bacteria ,Methylophilaceae ,ureC gene ,Methylococcaceae ,Microbiology ,03 medical and health sciences ,Rumen ,Oxalobacteraceae ,Original Research ,rumen digesta ,biology ,food and beverages ,Paenibacillaceae ,biology.organism_classification ,030104 developmental biology ,biology.protein ,rumen wall ,Bacteria - Abstract
Ureolytic bacteria are key organisms in the rumen producing urease enzymes to catalyze the breakdown of urea to ammonia for the synthesis of microbial protein. However, little is known about the diversity and distribution of rumen ureolytic microorganisms. The urease gene (ureC) has been the target gene of choice for analysis of the urea-degrading microorganisms in various environments. In this study, we investigated the predominant ureC genes of the ureolytic bacteria in the rumen of dairy cows using high-throughput sequencing. Six dairy cows with rumen fistulas were assigned to a two-period cross-over trial. A control group (n = 3) were fed a total mixed ration without urea and the treatment group (n = 3) were fed rations plus 180 g urea per cow per day at three separate times. Rumen bacterial samples from liquid and solid digesta and rumen wall fractions were collected for ureC gene amplification and sequencing using Miseq. The wall-adherent bacteria (WAB) had a distinct ureolytic bacterial profile compared to the solid-adherent bacteria (SAB) and liquid-associated bacteria (LAB) but more than 55% of the ureC sequences did not affiliate with any known taxonomically assigned urease genes. Diversity analysis of the ureC genes showed that the Shannon and Chao1 indices for the rumen WAB was lower than those observed for the SAB and LAB (P < 0.01). The most abundant ureC genes were affiliated with Methylococcaceae, Clostridiaceae, Paenibacillaceae, Helicobacteraceae, and Methylophilaceae families. Compared with the rumen LAB and SAB, relative abundance of the OTUs affiliated with Methylophilus and Marinobacter genera were significantly higher (P < 0.05) in the WAB. Supplementation with urea did not alter the composition of the detected ureolytic bacteria. This study has identified significant populations of ureolytic WAB representing genera that have not been recognized or studied previously in the rumen. The taxonomic classification of rumen ureC genes in the dairy cow indicates that the majority of ureolytic bacteria are yet to be identified. This survey has expanded our knowledge of ureC gene information relating to the rumen ureolytic microbial community, and provides a basis for obtaining regulatory targets of ureolytic bacteria to moderate urea hydrolysis in the rumen.
- Published
- 2017
6. Insights into Abundant Rumen Ureolytic Bacterial Community Using Rumen Simulation System
- Author
-
Nan Zheng, Di Jin, Dengpan Bu, Shengguo Zhao, Yves Beckers, Jiaqi Wang, and Pengpeng Wang
- Subjects
0301 basic medicine ,Microbiology (medical) ,Urease ,030106 microbiology ,ureolytic bacteria ,urea ,Bacterial growth ,Microbiology ,03 medical and health sciences ,Rumen ,chemistry.chemical_compound ,medicine ,acetohydroxamic acid ,Original Research ,rumen ,biology ,Acetohydroxamic acid ,high-throughput sequencing ,Ammonia volatilization from urea ,biology.organism_classification ,030104 developmental biology ,chemistry ,Urea ,biology.protein ,Bacteria ,Succinivibrionaceae ,medicine.drug - Abstract
Urea, a non-protein nitrogen for dairy cows, is rapidly hydrolyzed to ammonia by urease produced by ureolytic bacteria in the rumen, and the ammonia is used as nitrogen for rumen bacterial growth. However, there is limited knowledge with regard to the ureolytic bacteria community in the rumen. To explore the ruminal ureolytic bacterial community, urea, or acetohydroxamic acid (AHA, an inhibitor of urea hydrolysis) were supplemented into the rumen simulation systems. The bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the ureoltyic bacteria by comparing different treatments. The results revealed that urea supplementation significantly increased the ammonia concentration, and AHA addition inhibited urea hydrolysis. Urea supplementation significantly increased the richness of bacterial community and the proportion of ureC genes. The composition of bacterial community following urea or AHA supplementation showed no significant difference compared to the groups without supplementation. The abundance of Bacillus and unclassified Succinivibrionaceae increased significantly following urea supplementation. Pseudomonas, Haemophilus, Neisseria, Streptococcus, and Actinomyces exhibited a positive response to urea supplementation and a negative response to AHA addition. Results retrieved from the NCBI protein database and publications confirmed that the representative bacteria in these genera mentioned above had urease genes or urease activities. Therefore, the rumen ureolytic bacteria were abundant in the genera of Pseudomonas, Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus, and unclassified Succinivibrionaceae. Insights into abundant rumen ureolytic bacteria provide the regulation targets to mitigate urea hydrolysis and increase efficiency of urea nitrogen utilization in ruminants.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.