1. Validation of the breast cancer surveillance consortium model of breast cancer risk.
- Author
-
Tice, Jeffrey A, Bissell, Michael CS, Miglioretti, Diana L, Gard, Charlotte C, Rauscher, Garth H, Dabbous, Firas M, and Kerlikowske, Karla
- Subjects
Breast ,Humans ,Breast Neoplasms ,Neoplasm Invasiveness ,Mass Screening ,Risk Assessment ,Risk Factors ,Predictive Value of Tests ,Adult ,Aged ,Middle Aged ,Female ,Breast Density ,Breast cancer surveillance consortium ,Breast density ,Breast neoplasms ,Predictive value of tests ,ROC curve ,Risk assessment ,Cancer ,Prevention ,Breast Cancer ,Clinical Research ,Detection ,screening and diagnosis ,4.2 Evaluation of markers and technologies ,Clinical Sciences ,Oncology and Carcinogenesis ,Oncology & Carcinogenesis - Abstract
PurposeIn order to use a breast cancer prediction model in clinical practice to guide screening and prevention, it must be well calibrated and validated in samples independent from the one used for development. We assessed the accuracy of the breast cancer surveillance consortium (BCSC) model in a racially diverse population followed for up to 10 years.MethodsThe BCSC model combines breast density with other risk factors to estimate a woman's 5- and 10-year risk of invasive breast cancer. We validated the model in an independent cohort of 252,997 women in the Chicago area. We evaluated calibration using the ratio of expected to observed (E/O) invasive breast cancers in the cohort and discrimination using the area under the receiver operating characteristic curve (AUROC).ResultsIn an independent cohort of 252,997 women (median age 50 years, 26% non-Hispanic Black), the BCSC model was well calibrated (E/O = 0.94, 95% confidence interval [CI] 0.90-0.98), but underestimated the incidence of invasive breast cancer in younger women and in women with low mammographic density. The AUROC was 0.633, similar to that observed in prior validation studies.ConclusionsThe BCSC model is a well-validated risk assessment tool for breast cancer that may be particularly useful when assessing the utility of supplemental screening in women with dense breasts.
- Published
- 2019