The incidence of melanoma is increasing rapidly worldwide. In the United States, an estimated 8700 deaths (Jemal et al, 2010) result annually from this disease. The development of metastatic disease is associated with a dismal prognosis (Barth et al, 1995) and, until recently, the FDA-approved therapeutic options were not associated with a survival benefit (Atkins et al, 1999, 2000; Chapman et al, 2011). Ipilimumab, an anti-CTLA-4 antibody, does confer a modest survival benefit in this population, but survival is still limited (median overall survival (OS)=10–11.2 months; Hodi et al, 2010; Robert et al, 2011). Therapeutic strategies targeting tumour-driving oncogenes now promise to revolutionise the treatment of melanoma. In particular, the BRAF inhibitors vemurafenib and GSK2118643 show evidence of clinical activity in a large proportion of patients whose tumours harbour BRAFV600E/K mutations (Flaherty et al, 2010; Kefford et al, 2010; Chapman et al, 2011). However, about half of the cutaneous melanoma tumours do not harbour BRAF mutations, and even in patients with these mutations, responses to vemurafenib are transient, lasting a median of 6.7 months (Chapman et al, 2011). Therefore, the identification of additional therapeutic targets in melanoma is urgently needed. Given the role of invasion and metastasis in the clinical progression of melanoma, strategies inhibiting these processes could substantially impact the clinical course of the disease. Src and the related Src family kinases signal through multiple downstream intermediaries including STAT3 (Yu et al, 1995), FAK, and β-catenin (Irby et al, 2005), and Src activation has been implicated in decreased tumour cell adhesion, increased invasiveness, and increased motility (Buettner et al, 2008). Src activation has been implicated in the pathogenesis of colon (Irby et al, 1999; Kline et al, 2008), lung (Song et al, 2006), pancreas (Trevino et al, 2006), breast (Hiscox et al, 2006; Jallal et al, 2007; Morgan et al, 2009), and prostate cancer (Nam et al, 2005; Kotha et al, 2006). In uveal melanoma, Src activation has been associated with the MAP kinase pathway activation (Maat et al, 2009). Src is also frequently activated in cutaneous melanoma (Niu et al, 2002; Homsi et al, 2009; Eustace et al, 2010), and Src overexpression increases cutaneous melanoma cell proliferation and decreases adhesion (Boukerche et al, 2010). Conversely, Src inhibition leads to decreased proliferation and migration in melanoma cell lines (Eustace et al, 2008, 2010). Dasatinib is a multi-targeted small-molecule kinase inhibitor that inhibits Src and c-Kit in low nanomolar range. C-Kit is mutated in approximately 15–20% of acral and mucosal melanomas (Beadling et al, 2008; Satzger et al, 2008; Torres-Cabala et al, 2009), and marked objective tumour responses have been observed in patients with exon 11 and exon 13 c-Kit mutant melanoma treated with dasatinib. In one case, this occurred even after disease progression on imatinib (Woodman et al, 2009). In melanoma cell lines that have not been selected for c-Kit mutations, dasatinib decreases cellular proliferation (Eustace et al, 2010) and enhances apoptosis (Niu et al, 2002), and dasatinib decreases cell migration even in cells in which it has no antiproliferative effect (Eustace et al, 2008, 2010). Dasatinib may also inhibit the formation of new melanoma lung metastases in vivo (Fraser et al, 2010). Dasatinib monotherapy is only modestly active in melanoma patients unselected for c-Kit mutations. In a phase II clinical trial, 36 metastatic melanoma patients were treated with dasatinib dosed at 70–100 mg PO b.i.d. Two partial responses were reported and the 6-month progression-free survival (PFS) rate was 13% (Kluger et al, 2011). One responding patient had a confirmed c-Kit mutation in exon 13; the other was a c-KIT wild type. Four c-KIT wild-type patients were described with prolonged stabilisation of disease lasting up to 136 weeks. Common dose-limiting toxicities associated with dasatinib in this trial included pleural effusions, dyspnoea, fatigue, and diarrhoea. In addition to its single agent activity, cell-culture experiments have demonstrated an antiproliferative synergy between dasatinib and chemotherapeutic agents including cisplatin (Homsi et al, 2009) and temozolomide (Eustace et al, 2008) in c-Kit wild-type melanoma. Dacarbazine is a commonly employed alkylating agent with single-agent activity in advanced melanoma (Luikart et al, 1984; Chapman et al, 1999; Middleton et al, 2000; Schadendorf et al, 2006). We conducted a phase I clinical trial of dasatinib in combination with dacarbazine, to determine the safety and tolerability of this regimen in patients with advanced melanoma and to identify a recommended phase II dose. Selective dose expansion cohorts were evaluated for preliminary evidence of efficacy. Tumours from a subset of patients were also evaluated for BRAF, NRAS, and c-Kit mutations as a potential biomarker of response.