1. Particulate Air Pollution Exposure and Expression of Viral and Human MicroRNAs in Blood: The Beijing Truck Driver Air Pollution Study
- Author
-
John P. McCracken, Jitendra Barupal, Yinan Zheng, Marco Sanchez-Guerra, Joel Schwartz, Chang Dou, Katherine Rose Wolf, Sheng Wang, Lei Liu, Lifang Hou, Andrea A. Baccarelli, Xiao Zhang, Valeria Motta, Anaite Diaz, Wei Zhang, and Pier Alberto Bertazzi
- Subjects
Adult ,Male ,0301 basic medicine ,viruses ,Health, Toxicology and Mutagenesis ,Air pollution ,030204 cardiovascular system & hematology ,Biology ,medicine.disease_cause ,Truck driver ,03 medical and health sciences ,0302 clinical medicine ,Beijing ,Occupational Exposure ,microRNA ,Leukocytes ,medicine ,Humans ,Particle Size ,Vehicle Emissions ,Extramural ,Research ,Public Health, Environmental and Occupational Health ,Environmental Exposure ,Environmental exposure ,Particulate air pollution ,Virology ,Carbon ,3. Good health ,MicroRNAs ,030104 developmental biology ,13. Climate action ,Immunology ,RNA, Viral ,Female ,Particulate Matter ,Occupational exposure - Abstract
Background MicroRNAs (miRNAs) are post-transcriptional gene suppressors and potential mediators of environmental effects. In addition to human miRNAs, viral miRNAs expressed from latent viral sequences are detectable in human cells. Objective In a highly exposed population in Beijing, China, we evaluated the associations of particulate air pollution exposure on blood miRNA profiles. Methods The Beijing Truck Driver Air Pollution Study (BTDAS) included 60 truck drivers and 60 office workers. We investigated associations of short-term air pollution exposure, using measures of personal PM2.5 (particulate matter ≤ 2.5 μm) and elemental carbon (EC), and ambient PM10 (≤ 10 μm), with blood NanoString nCounter miRNA profiles at two exams separated by 1–2 weeks. Results No miRNA was significantly associated with personal PM2.5 at a false discovery rate (FDR) of 20%. Short-term ambient PM10 was associated with the expression of 12 miRNAs in office workers only (FDR < 20%). Short-term EC was associated with differential expression of 46 human and 7 viral miRNAs, the latter including 3 and 4 viral miRNAs in office workers and truck drivers, respectively. EC-associated miRNAs differed between office workers and truck drivers with significant effect modification by occupational group. Functional interaction network analysis suggested enriched cellular proliferation/differentiation pathways in truck drivers and proinflammation pathways in office workers. Conclusions Short-term EC exposure was associated with the expression of human and viral miRNAs that may influence immune responses and other biological pathways. Associations between EC exposure and viral miRNA expression suggest that latent viral miRNAs are potential mediators of air pollution–associated health effects. PM2.5/PM10 exposures showed no consistent relationships with miRNA expression. Citation Hou L, Barupal J, Zhang W, Zheng Y, Liu L, Zhang X, Dou C, McCracken JP, Díaz A, Motta V, Sanchez-Guerra M, Wolf KR, Bertazzi PA, Schwartz JD, Wang S, Baccarelli AA. 2016. Particulate air pollution exposure and expression of viral and human microRNAs in blood: the Beijing Truck Driver Air Pollution Study. Environ Health Perspect 124:344–350; http://dx.doi.org/10.1289/ehp.1408519
- Published
- 2016