1. On the application of the GS4-1 framework for fluid dynamics and adaptive time-stepping via a universal A-posteriori error estimator
- Author
-
Yazhou Wang, Ningning Xie, Likun Yin, Tong Zhang, Xuelin Zhang, Shengwei Mei, Xiaodai Xue, and Kumar Tamma
- Subjects
Mechanics of Materials ,Applied Mathematics ,Mechanical Engineering ,Computer Science Applications - Abstract
Purpose The purpose of this paper is to describe a novel universal error estimator and the adaptive time-stepping process in the generalized single-step single-solve (GS4-1) computational framework, applied for the fluid dynamics with illustrations to incompressible Navier–Stokes equations. Design/methodology/approach The proposed error estimator is universal and versatile that it works for the entire subsets of the GS4-1 framework, encompassing the nondissipative Crank–Nicolson method, the most dissipative backward differential formula and anything in between. It is new and novel that the cumbersome design work of error estimation for specific time integration algorithms can be avoided. Regarding the numerical implementation, the local error estimation has a compact representation that it is determined by the time derivative variables at four successive time levels and only involves vector operations, which is simple for numerical implementation. Additionally, the adaptive time-stepping is further illustrated by the proposed error estimator and is used to solve the benchmark problems of lid-driven cavity and flow past a cylinder. Findings The proposed computational procedure is capable of eliminating the nonphysical oscillations in GS4-1(1,1)/Crank–Nicolson method; being CPU-efficient in both dissipative and nondissipative schemes with better solution accuracy; and detecting the complex physics and hence selecting a suitable time step according to the user-defined error threshold. Originality/value To the best of the authors’ knowledge, for the first time, this study applies the general purpose GS4-1 family of time integration algorithms for transient simulations of incompressible Navier–Stokes equations in fluid dynamics with constant and adaptive time steps via a novel and universal error estimator. The proposed computational framework is simple for numerical implementation and the time step selection based on the proposed error estimation is efficient, benefiting to the computational expense for transient simulations.
- Published
- 2022