1. miR-122-3p targets UBE2I to regulate the immunosuppression of liver cancer and the intervention of Liujunzi formula.
- Author
-
Guo Z, Wang Y, Qin W, Heng Y, Chen X, Liu N, Li J, Wu H, Zhou Y, Zhang R, Song S, and Wu Z
- Subjects
- Humans, Apoptosis drug effects, NF-kappa B metabolism, Cell Line, Tumor, Gene Expression Regulation, Neoplastic drug effects, Signal Transduction drug effects, Hep G2 Cells, Immune Tolerance drug effects, MicroRNAs genetics, MicroRNAs metabolism, Liver Neoplasms drug therapy, Liver Neoplasms genetics, Ubiquitin-Conjugating Enzymes genetics, Ubiquitin-Conjugating Enzymes metabolism, Drugs, Chinese Herbal pharmacology
- Abstract
Ethnopharmacological Relevance: Liujunzi formula has been used to treat liver cancer in China for many years, but its underlying mechanism remains unclear. We previously found that decreased expression of miR-122-3p was associated with liver cancer. In this study, we aimed to explore the target of miR-122-3p and the effect of the Liujunzi formula on miR-122-3p and its downstream events in liver cancer., Material and Methods: Bioinformatics pinpointed potential targets of miR-122-3p. The actual target was confirmed by miRNA mimic/inhibitor transfections and a dual-luciferase reporter assay. RNA-seq looked at downstream genes impacted by this target. Flow cytometry checked for changes in T cell apoptosis levels after exposing them to liver cancer cells. Gene expression was measured by RT-qPCR, western blotting, and immunofluorescence staining., Results: Cell experiments found the Liujunzi extract (LJZ) upregulated miR-122-3p and in a dose-dependent manner. Bioinformatics analysis found UBE2I was a potential target of miR-122-3p, which was validated through experiments using miRNA mimics/inhibitors and a dual-luciferase reporter assay. RNA-seq data implicated the NF-κB pathway as being downstream of the miR-122-3p/UBE2I axis, further confirmed by forcing overexpression of UBE2I. Bioinformatic evidence suggested a link between UBE2I and T cell infiltration in liver cancer. Given that the NF-κB pathway drives PD-L1 expression, which can inhibit T cell infiltration, we investigated whether PD-L1 is a downstream effector of miR-122-3p/UBE2I. This was corroborated through mining public databases, UBE2I overexpression studies, and tumor-T cell co-culture assays. In addition, we also confirmed that LJZ downregulates UBE2I and NF-κB/PD-L1 pathways through miR-122-3p. LJZ also suppressed SUMOylation in liver cancer cells and protected PD-1
+ T cells from apoptosis induced by co-culture with tumor cells. Strikingly, a miR-122-3p inhibitor abrogated LJZ's effects on UBE2I and PD-L1, and UBE2I overexpression rescued the LJZ-mediated effects on NF-κB and PD-L1., Conclusions: miR-122-3p targets UBE2I, thereby suppressing the NF-κB signaling cascade and downregulating PD-L1 expression, which potentiates anti-tumor immune responses. LJZ bolsters anti-tumor immunity by modulating the miR-122-3p/UBE2I/NF-κB/PD-L1 axis in liver cancer cells., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF