1. Nitrogen removal intensification of biofilm through bioaugmentation with Methylobacterium gregans DC-1 during wastewater treatment.
- Author
-
Hong P, Sun X, Yuan S, Wang Y, Gong S, Zhang Y, Sang P, Xiao B, and Shu Y
- Subjects
- Denitrification, Ammonia, Nitrogen, Biofilms, Bioreactors microbiology, Nitrification, Methylobacterium, Water Purification
- Abstract
The increasing concern for environmental remediation has led to a search for effective methods to remove eutrophic nutrients. In this study, Methylobacterium gregans DC-1 was utilized to improve nitrogen removal in a sequencing batch biofilm reactor (SBBR) via aerobic denitrification. This bacterium has the extraordinary characteristics of strong auto-aggregation and a high ability to remove nitrogen efficiently, making it an ideal candidate for enhanced treatment of nitrogen-rich wastewater. This strain was used for the bioassessment of a test reactor (SBBRbio), which showed a shorter biofilm formation time compared to a control reactor (SBBRcon) without this strain inoculation. Moreover, the enhanced biofilm was enriched in TB-EPS and had a wider variety of protein secondary structures than SBBRcon. During the stabilization phase of SBBRbio, the EPS molecules showed the highest proportion of intermolecular hydrogen bonding. It is possible that bioaugmentation with this strain positively affects the structural stability of biofilm. At influent ammonia loadings of 100 and 150 mg. L
-1 , the average reduction of ammonia and nitrate-nitrogen was higher in the experimental system compared to the control system. Additionally, nitrite-N accumulation was lower and N2 O production decreased compared to the control. Analysis of the microbial community structure demonstrated successful colonization in the bioreactor by a highly nitrogen-tolerant strain that efficiently removed inorganic nitrogen. These results illustrate the great potential of this type of denitrifying bacteria in the application of bioaugmentation systems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF