1. Metabolite analysis of 14 C-labeled chloromethylisothiazolinone/methylisothiazolinone for toxicological consideration of inhaled isothiazolinone biocides in lungs.
- Author
-
Park JE, Ryu SH, Ito S, Shin H, Kim YH, and Jeon J
- Subjects
- Animals, Tandem Mass Spectrometry, Mice, Male, Inhalation Exposure, Chromatography, High Pressure Liquid, Disinfectants toxicity, Disinfectants analysis, Thiazoles toxicity, Thiazoles chemistry, Lung metabolism, Carbon Radioisotopes
- Abstract
5-Chloro-2-methyl-4-isothiazolin-3-one (CMIT) and 2-methyl-4-isothiazolin-3-one (MIT) used as preservatives in various products, including humidifier disinfectants, presents substantial health hazards. This research delves into the toxicological assessments of CMIT/MIT in the respiratory system using animal models. Through the synthesis of radiolabeled [
14 C]CMIT and [14 C]MIT, we investigated the biological uptake and in vivo behaviors of CMIT/MIT in the respiratory tissues following intratracheal exposure. Quantitative whole-body autoradiography (QWBA) revealed significant persistence of CMIT/MIT in lung tissue. In addition, radio high-performance liquid chromatography (radio-HPLC) with tandem mass spectrometry (LC-MS/MS) was employed for metabolite profiling and identification. Notably, around 28% of the radiolabel was retained in tissue after the extraction step, suggesting covalent binding of CMIT/MIT and their metabolites with pulmonary biomolecules. This observation demonstrates the propensity of the electrophilic isothiazolinone ring in CMIT/MIT to undergo chemical interactions with biothiols in proteins and enzymes, fostering irreversible alterations of biomolecules. Such accumulations of transformations could result in direct toxicity at both cellular and organ levels. Additionally, the detection of metabolites, including a MIT dimer conjugated with glutathione (GSH), as analyzed by mass spectrometry indicates the possible reduction of cellular GSH levels and subsequent oxidative stress. This investigation offers an in-depth insight into the toxic mechanisms of CMIT/MIT, underlying their capability to engage in complex formations with biomacromolecules and induce pronounced respiratory toxicity. These results highlight the imperative for stringent safety assessments of these chemicals, advocating for improved public health and safety measures in the use of chemicals., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF