1. Synthesis and properties of a novel modified nucleic acid, 2'-N-methanesulfonyl-2'-amino-locked nucleic acid.
- Author
-
Sawamoto H, Sasaki T, Takegawa-Araki T, Utsugi M, Furukawa H, Hirakawa Y, Yamairi F, Kurita T, Murahashi K, Yamada K, Ohta T, Kumagai S, Takemiya A, Obika S, and Kotera J
- Subjects
- Oligonucleotides pharmacology, Oligonucleotides chemistry, Oligonucleotides, Antisense pharmacology, Oligonucleotides, Antisense chemistry, RNA chemistry, RNA, Complementary, Nucleic Acids chemistry
- Abstract
2'-Amino-locked nucleic acid has a functionalizable nitrogen atom at the 2'-position of its furanose ring that can provide desired properties to a nucleic acid as a scaffold. In this study, we synthesized a novel nucleic acid, 2'-N-methanesulfonyl-2'-amino-locked nucleic acid (ALNA[Ms]) and conducted comparative studies on the physical and pharmacological properties of the ALNA[Ms] and on conventional nucleic acids, such as 2'-methylamino-LNA (ALNA[Me]), which is a classical 2'-amino-LNA derivative, and also on 2',4'-BNA/LNA (LNA). ALNA[Ms] oligomers exhibited binding affinities for the complementary RNA strand that are similar to those of conventional nucleic acids. Four types of ALNA[Ms] nucleosides exhibited no genotoxicity in bacterial reverse mutation assays. The knockdown abilities of Malat1 RNA using the Matat1 antisense oligonucleotide (ASO) containing ALNA[Ms] were higher than those of ALNA[Me] and were closer to those of LNA. Furthermore, the ASO containing ALNA[Ms] showed different tissue tropism from that containing LNA. ALNA[Ms] exhibited biological activities that were distinct from conventional constrained nucleic acids, suggesting the possibility that ALNA[Ms] can serve as novel modified nucleic acids in oligonucleotide therapeutics., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF