1. Efficient photocatalytic removal of phthalates easily implemented over a bi-functional {001}TiO 2 surface.
- Author
-
Gu X, Qin N, Wei G, Hu Y, Zhang YN, and Zhao G
- Subjects
- Adsorption, Titanium, Esters, Phthalic Acids
- Abstract
It is stubborn to remove the lowly concentrated phthalic acid esters (PAEs) that usually coexist with other highly concentrated but low-toxic pollutants in municipal sewage. Herein, we report a novel strategy for completely removing the PAEs over a bi-functional {001}TiO
2 surface (with highly exposed {001} facet), which not only serve as functional sites to specifically adsorb the target PAEs pollutants, but also contribute to an enhanced oxidation ability. The adsorption behavior of PAEs on {001}TiO2 is analyzed deeply through kinetic experiments combining with in situ ATR-FTIR spectroscopy and theoretical calculations. The results reveal that the adsorption capacities of PAEs on {001}TiO2 are about 4-5 times higher than that on TiO2 , both of which follow the pseudo-second-order and Langmuir model. This is mainly attributed to the interfacial Lewis Acid-Base Pair between {001} facet Ti5c sites and CO of PAEs. Benefitting from the specific adsorption capability toward target pollutant and enhanced oxidation ability of {001} facets, nearly 100% of DMP or DEP in simulated wastewater can be eliminated by {001}TiO2 within 2 h illumination, and the relevant degradation rate constants (k) (3.67 h-1 for DMP and 2.19 h-1 for DEP) are 5.73 and 3.08 folds higher than that of pure TiO2 , respectively. In the application of municipal wastewater, nearly 76% of DMP and 85% DEP can be eliminated by {001}TiO2 within 2 h illumination, which are nearly 3-6 fold higher than that of pure TiO2 ., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier Ltd. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF