1. Regulatory T-cell recovery in recipients of haploidentical nonmyeloablative hematopoietic cell transplantation with a humanized anti-CD2 mAb, MEDI-507, with or without fludarabine.
- Author
-
Shaffer J, Villard J, Means TK, Alexander S, Dombkowski D, Dey BR, McAfee S, Ballen KK, Saidman S, Preffer FI, Sachs DH, Spitzer TR, and Sykes M
- Subjects
- Antibodies, Monoclonal, Humanized, Antigens, CD analysis, Antigens, Differentiation analysis, CD2 Antigens immunology, CTLA-4 Antigen, Forkhead Transcription Factors analysis, Histocompatibility Testing, Humans, Interferon-gamma genetics, Transforming Growth Factor beta genetics, Transplantation Chimera, Vidarabine pharmacology, Antibodies, Monoclonal pharmacology, Hematopoietic Stem Cell Transplantation, T-Lymphocytes, Regulatory physiology, Vidarabine analogs & derivatives
- Abstract
Objective: We have evaluated T-cell reconstitution and reactivity in patients receiving nonmyeloablative haploidentical hematopoietic cell transplantation (HCT) protocols involving an anti-CD2 monoclonal antibody (MEDI 507) to treat chemorefractory hematopoietic malignancies., Methods: Three cohorts of four patients each and one cohort of six patients received one of four Medi-507-based regimens, all of which included cyclophosphamide, thymic irradiation, and a short posttransplantation course of cyclosporine., Results: Following marked T-cell depletion, initially recovering CD4 and CD8 T cells were mainly memory-type cells. A high percentage of CD4 T cells expressed high levels of CD25 in recipients of all protocols, except the only protocol to include fludarabine, early post-HCT. CD25 expression varied inversely with T-cell concentrations in blood. CD25(high) CD4 T cells expressed Foxp3 and cytotoxic T-lymphocyte-associated protein 4, indicating that they were regulatory T cells (Treg)., Conclusions: Fludarabine treatment prevents Treg enrichment after haploidentical nonmyeloablative stem cell transplantation, presumably by depleting recipient Tregs. In vitro analyses of allorecognition were consistent with a cytokine-mediated rejection process in one case and in another provided proof of principle that mixed chimerism achieved without graft-vs-host disease induces donor- and recipient-specific tolerance. More reliable achievement of this outcome could provide a promising strategy for organ allograft tolerance induction.
- Published
- 2007
- Full Text
- View/download PDF