1. Preparation, characterization and in vivo evaluation of a combination delivery system based on hyaluronic acid/jeffamine hydrogel loaded with PHBV/PLGA blend nanoparticles for prolonged delivery of Teriparatide.
- Author
-
Bahari Javan N, Montazeri H, Rezaie Shirmard L, Jafary Omid N, Barbari GR, Amini M, Ghahremani MH, Rafiee-Tehrani M, and Abedin Dorkoosh F
- Subjects
- Animals, Cell Line, Cell Survival drug effects, Drug Carriers chemistry, Drug Delivery Systems methods, Mice, NIH 3T3 Cells, Particle Size, Polylactic Acid-Polyglycolic Acid Copolymer, Delayed-Action Preparations chemistry, Hyaluronic Acid chemistry, Hydrogel, Polyethylene Glycol Dimethacrylate chemistry, Lactic Acid chemistry, Nanoparticles chemistry, Polyesters chemistry, Polyglycolic Acid chemistry, Teriparatide chemistry
- Abstract
In the current study, biodegradable PHBV/PLGA blend nanoparticles (NPs) containing Teriparatide were loaded in hyaluronic acid/jeffamine (HA-JEF ED-600) hydrogel to prepare a combination delivery system (CDS) for prolonged delivery of Teriparatide. The principal purpose of the present study was to formulate an effective and prolonged Teriparatide delivery system in order to reduce the frequency of injection and thus enhance patient's compliance. Morphological properties, swelling behaviour, crosslinking efficiency and rheological characterization of HA-JEF ED-600 hydrogel were evaluated. The CDS was acquired by adding PHBV/PLGA NPs to HA-JEF ED-600 hydrogel simultaneously with crosslinking reaction. The percentage of NPs incorporation within the hydrogel as well as the loading capacity and morphology of Teriparatide loaded CDS were examined. Intrinsic fluorescence and circular dichroism spectroscopy proved that Teriparatide remains stable after processing. The release profile represented 63% Teriparatide release from CDS within 50days with lower burst release compared to NPs and hydrogel. MTT assay was conducted by using NIH3T3 cell line and no sign of reduction in cell viability was observed. Based on Miller and Tainter method, LD
50 of Teriparatide loaded CDS was 131.8mg/kg. In vivo studies demonstrated that Teriparatide loaded CDS could effectively increase serum calcium level after subcutaneous injection in mice. Favourable results in the current study introduced CDS as a promising candidate for controlled delivery of Teriparatide and pave the way for future investigations in the field of designing prolonged delivery systems for other peptides and proteins., (Copyright © 2017 Elsevier B.V. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF