1. Employ machine learning to identify NAD+ metabolism-related diagnostic markers for ischemic stroke and develop a diagnostic model.
- Author
-
Sun Y, Ding S, Shen F, Yang X, Sun W, and Wan J
- Subjects
- Humans, Biomarkers metabolism, Databases, Genetic, Gene Expression Profiling, NAD metabolism, Machine Learning, Ischemic Stroke genetics, Ischemic Stroke diagnosis, Gene Regulatory Networks
- Abstract
Ischemic stroke (IS) is a severe condition regulated by complex molecular alterations. This study aimed to identify potential nicotinamide adenine dinucleotide (NAD+) metabolism-associated diagnostic markers of IS and explore their associations with immune dynamics. Weighted Gene Co-expression Network Analysis and single-sample gene set enrichment analysis (ssGSEA) were employed to identify key gene modules on the GEO dataset (GSE16561). LASSO regression was used to identify diagnostic genes. A diagnostic model was then developed using the training dataset, and its performance was assessed using a validation dataset (GSE22255 dataset). Associations between hub genes and immune cells, immune response genes, and human leukocyte antigen (HLA) genes were assessed by ssGSEA. A regulatory network was constructed using mirBase and TRRUST databases. A total of 20 NAD+ metabolic genes exhibited noteworthy expression variations. Within the module notably associated with NAD+ metabolism, 19 specific genes were included in the diagnostic model, which was validated on the GSE22255 dataset (AUC: 0.733). There were significant disparities in immune cell populations, immune response genes, and HLA gene expression, all of which were associated with the hub genes. A regulatory network composed of 153 edges and 103 nodes was constructed. This study advances our understanding of IS by providing insights into NAD+ metabolism and gene interactions, contributing to potential diagnostic innovations in IS., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF