1. Transplantation of astrocyte-derived mitochondria into injured astrocytes has a protective effect following stretch injury.
- Author
-
Gong QY, Wang W, Cai L, Jing Y, Yang DX, Yuan F, Tian HL, Ding J, Chen H, and Xu ZM
- Subjects
- Animals, Mice, Brain Injuries, Traumatic metabolism, Brain Injuries, Traumatic pathology, Cells, Cultured, Apoptosis, Calcium metabolism, Mitochondrial Dynamics, Astrocytes metabolism, Mitochondria metabolism, Mice, Inbred C57BL, Cell Survival
- Abstract
Traumatic brain injury (TBI) is a global public-health problem. Astrocytes, and their mitochondria, are important factors in the pathogenesis of TBI-induced secondary injury. Mitochondria extracted from healthy tissues and then transplanted have shown promise in models of a variety of diseases. However, the effect on recipient astrocytes is unclear. Here, we isolated primary astrocytes from newborn C57BL/6 mice, one portion of which was used to isolate mitochondria, and another was subjected to stretch injury (SI) followed by transplantation of the isolated mitochondria. After incubation for 12 h, cell viability, mitochondrial dysfunction, calcium overload, redox stress, inflammatory response, and apoptosis were improved. Live-cell imaging showed that the transplanted mitochondria were incorporated into injured astrocytes and fused with their mitochondrial networks, which was in accordance with the changes in the expression levels of markers of mitochondrial dynamics. The astrocytic IKK/NF-κB pathway was decelerated whereas the AMPK/PGC-1α pathway was accelerated by transplantation. Together, these results indicate that exogenous mitochondria from untreated astrocytes can be incorporated into injured astrocytes and fuse with their mitochondrial networks, improving cell viability by ameliorating mitochondrial dysfunction, redox stress, calcium overload, and inflammation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF