1. MLN4924 alleviates autoimmune myocarditis by promoting Act1 degradation and blocking Act1-mediated mRNA stability.
- Author
-
Jiang Z, Li Z, Chen Y, Nie N, Liu X, Liu J, and Shen Y
- Subjects
- Animals, Mice, Male, Interleukin-17 metabolism, Disease Models, Animal, Humans, Anti-Inflammatory Agents pharmacology, Anti-Inflammatory Agents therapeutic use, RNA, Messenger metabolism, Mice, Inbred BALB C, Myocarditis drug therapy, Myocarditis immunology, Myocarditis metabolism, Pyrimidines pharmacology, Pyrimidines therapeutic use, Autoimmune Diseases drug therapy, Adaptor Proteins, Signal Transducing metabolism, Cyclopentanes pharmacology, Cyclopentanes therapeutic use, RNA Stability drug effects, Cytokines metabolism
- Abstract
Background: Prolonged exposure to interleukin-17A (IL-17A) can induce autoimmune myocarditis, and MLN4924, an inhibitor of NEDD8 activating enzyme (NAE), has been reported to effectively suppress various inflammatory reactions. However, the effects of MLN4924 in IL-17A-mediated inflammation associated with autoimmune myocarditis remain uncertain., Methods: An experimental autoimmune myocarditis (EAM) model was established and treated with MLN4924. The inflammation degree of heart tissues was assessed histopathologically. The expression levels of inflammatory cytokines and chemokines were measured using ELISA and RT-qPCR, respectively. Additionally, the interaction of biomacromolecules was detected through co-immunoprecipitation (Co-IP) and RNA immunoprecipitation (RIP)., Results: MLN4924 could attenuate IL-17A-induced inflammation. In the in vivo studies, MLN4924 treatment improved inflammatory responses, diminished immune cell infiltration and tissue fibrosis, and reduced the secretion of various inflammatory cytokines in serum, including IL-1β, IL-6, TNF-α, and MCP-1. In vitro experiments further corroborated these findings, showing that MLN4924 treatment reduced the secretion and transcription of pro-inflammatory factors, particularly MCP-1. Mechanistically, we confirmed that MLN4924 promoted Act1 ubiquitination degradation and disrupted Act1's interaction with IL-17R, thereby impeding the formation of the IL-17R/Act1/TRAF6 complex and subsequent activation of TAK1, c-Jun, and p65. Moreover, MLN4924 interfered with Act1's binding to mRNA, resulting in mRNA instability., Conclusions: In conclusion, MLN4924 effectively alleviated inflammatory symptoms in EAM by disrupting the interaction between IL and 17R and Act1, thereby reducing Act1-mediated mRNA stability and resulting in decreased expression of pro-inflammatory factors., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF