1. Assessment of oxidative stress biomarkers in the threatened annual killifish Austrolebias charrua exposed to Roundup.
- Author
-
Pagano AD, Gonçalves NM, Domingues WB, da Silveira TLR, Kütter MT, Junior ASV, Corcini CD, Nascimento MC, Dos Reis LFV, Costa PG, Bianchini A, Volcan MV, Remião MH, and Campos VF
- Subjects
- Animals, Antioxidants metabolism, Glycine toxicity, Reactive Oxygen Species metabolism, Oxidative Stress, Fishes metabolism, Fundulus heteroclitus, Biomarkers metabolism, Glyphosate, Herbicides toxicity
- Abstract
This study aimed to analyze the toxic effects of Roundup Transorb® on the endangered Neotropical annual killifish Austrolebias charrua through the assessment of molecular and biochemical biomarkers. The fish were collected in temporary ponds and exposed to environmentally realistic concentrations of the herbicide (5 mg.L
-1 for 96 h). The production of ROS, lipid peroxidation, DNA damage, and membrane fluidity were evaluated in the blood cells by flow cytometry. The mRNA expression of the antioxidant-related genes sod2, cat, gstα, atp1a1, gclc, and ucp1 across the brain, liver, and gills was quantified. The acute exposure of annual killifish to Roundup significantly increased ROS production, lipid peroxidation, and DNA damage in their erythrocytes. Likewise, Roundup Transorb® decreased membrane fluidity in the blood cells of the exposed fish. Gene expression analysis revealed that Roundup exposure alters the relative expression of genes associated with oxidative stress and antioxidant defense. Our results give rise to new insights into adaptive mechanisms of A. charrua in response to Roundup. Since Brazilian annual killifishes strongly risk extinction, this study paves the way for developing novel biotechnologies applied to environmental monitoring and aquatic toxicology assessment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF