1. Altering prosthetic alignment does not affect hip and low back joint loading during sit-to-stand in people with a transtibial amputation.
- Author
-
Nolasco LA, Silverman AK, and Gates DH
- Subjects
- Humans, Male, Female, Middle Aged, Adult, Biomechanical Phenomena, Amputation, Surgical, Weight-Bearing physiology, Tibia surgery, Tibia physiopathology, Tibia physiology, Standing Position, Range of Motion, Articular physiology, Movement physiology, Sitting Position, Muscle, Skeletal physiology, Muscle, Skeletal physiopathology, Hip Joint surgery, Hip Joint physiology, Hip Joint physiopathology, Artificial Limbs
- Abstract
People with a transtibial amputation (TTA) have greater prevalence of low back and hip joint pain compared to the general population. Altered movement, loading patterns, and neuromuscular activation during daily tasks like sit-to-stand likely contribute to these high rates of pain. In addition, muscle activation, ground reaction forces, and trunk range of motion can be affected by prosthetic alignment during sit-to-stand. However, it is unclear how prosthetic alignment affects joint contact forces during this task. The purpose of this study was to investigate the effect of prosthetic alignment on hip and low-back joint loading in people with TTA during sit-to-stand. Kinematics, ground reaction forces, and muscle activity data were collected from 10 people with TTA and 10 age- and sex- matched individuals without limb loss during five self-paced sit-to-stand trials. Participants with TTA completed the sit-to-stand task with their prescribed alignment and six altered alignment conditions (±10 mm anterior/posterior, medial/lateral, and ± 20 mm short/tall). A musculoskeletal model was used to calculate hip and L4-L5 joint loading. There were no differences in hip or L4-L5 joint loading between alignments. Participants with TTA had a greater peak hip joint contact force on the intact side hip compared to the amputated side hip across all alignments. Participants with TTA had greater L4-L5 joint contact force compared to those without amputation. While prosthetic alignment did not affect joint loading during sit-to-stand, future work on additional dynamic tasks is needed to better understand the potential role of prosthetic alignment on joint loading., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF