1. Salicylate as an in vivo free radical trap: studies on ischemic insult to the rat intestine.
- Author
-
Udassin R, Ariel I, Haskel Y, Kitrossky N, and Chevion M
- Subjects
- Animals, Disease Models, Animal, Hydroxybenzoates metabolism, Hydroxyl Radical, Male, Rats, Reperfusion Injury pathology, Salicylic Acid, Free Radicals, Gentisates, Hydroxides metabolism, Intestines blood supply, Reperfusion Injury metabolism, Salicylates metabolism
- Abstract
Ischemia of rat intestine was induced in vivo by occlusion of the superior mesenteric artery (SMA) for 15 min. Sodium salicylate, 100 mg/kg, given IP, 30 min prior to the ischemic event served as a specific trap for hydroxyl radicals. Portions of the bowel were sequentially isolated and removed--2 min prior to ischemia, 2 min prior to declamping of the SMA, and 10 min following reperfusion. The bowel segments were homogenized in 3% TCA. The homogenate was centrifuged and filtrated through a 0.22 mu filter. The hydroxylation products of salicylate, dihydroxybenzoic acid (DHBA) derivatives, were isolated, identified, and quantified by HPLC coupled with electrochemical detection (ECD). The level of 2,5-DHBA (M +/- SE, ng/g tissue) in the preischemic bowel (N = 21) was 241.8 +/- 10.0. In the ischemic specimen the level of 2,5-DHBA increased significantly to 313.3 +/- 15.5 (p = 0.0129), and remained unchanged in the reperfusion period (322.8 +/- 15.5). The histological examination correlated well with these levels: mild villi damage in the ischemic period with no further exacerbation during the reperfusion period. This study in an in vivo animal model of intestinal ischemia-reperfusion provides direct evidence for the involvement of free radicals during the ischemic insult.
- Published
- 1991
- Full Text
- View/download PDF